留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反映混凝土单边效应的弹塑性损伤本构模型及应用

吕从聪 李宗利

吕从聪, 李宗利. 反映混凝土单边效应的弹塑性损伤本构模型及应用[J]. 应用数学和力学, 2017, 38(2): 144-152. doi: 10.21656/1000-0887.370278
引用本文: 吕从聪, 李宗利. 反映混凝土单边效应的弹塑性损伤本构模型及应用[J]. 应用数学和力学, 2017, 38(2): 144-152. doi: 10.21656/1000-0887.370278
Lü Cong-cong, LI Zong-li. An Elastoplastic Damage Constitutive Model for Concrete Considering Unilateral Effects[J]. Applied Mathematics and Mechanics, 2017, 38(2): 144-152. doi: 10.21656/1000-0887.370278
Citation: Lü Cong-cong, LI Zong-li. An Elastoplastic Damage Constitutive Model for Concrete Considering Unilateral Effects[J]. Applied Mathematics and Mechanics, 2017, 38(2): 144-152. doi: 10.21656/1000-0887.370278

反映混凝土单边效应的弹塑性损伤本构模型及应用

doi: 10.21656/1000-0887.370278
基金项目: 国家自然科学基金(面上项目)(51379178)
详细信息
    作者简介:

    吕从聪(1987—),男,博士生(E-mail: lcc320721@163.com);李宗利(1967—),男,教授,博士(通讯作者. E-mail: Zongli02@163.com).

  • 中图分类号: TV313

An Elastoplastic Damage Constitutive Model for Concrete Considering Unilateral Effects

Funds: The National Natural Science Foundation of China(General Program)(51379178)
  • 摘要: 为了尽可能有效和准确地描述混凝土材料的非线性力学特性,在研究国内外混凝土损伤本构模型的基础上,基于连续介质损伤力学和不可逆热力学的理论框架,采用统一强度理论作为屈服破坏准则,分别定义拉、压双标量损伤来考虑材料的拉、压迥异特性,同时引入反向加载影响因子以修正拉压交替循环加载时材料的单边效应,以及多轴应力状态下拉、压损伤累积的相互影响,最终采用显式积分算法建立了一种改进的混凝土弹塑性损伤本构模型.不同素混凝土加载试验模拟结果初步验证了建议模型的有效性,而通过对含I型裂缝的混凝土简支梁试验进行数值分析,结果表明,所得的荷载挠度曲线与试验结果吻合良好,进一步检验了模型应用于结构非线性分析的有效性.
  • [1] Mazars J. A description of micro- and macroscale damage of concrete structures[J]. Engineering Fracture Mechanics,1986,25(5/6): 729-737.
    [2] Lubliner J, Oliver J, Oller S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures,1989,25(3): 299-326.
    [3] Mazars J, Pijaudier-Cabot G. From damage to fracture mechanics and conversely: a combined approach[J]. International Journal of Solids and Structures,1996,33(20): 3327-3342.
    [4] Ju J W. On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects[J]. International Journal of Solids Structures,1989,25(7): 803-833.
    [5] 李杰, 吴建营, 陈建兵. 混凝土随机损伤力学[M]. 北京: 科学出版社, 2014.(LI Jie, WU Jian-ying, CHEN Jian-bing. Stochastic Damage Mechanics of Concrete Structures [M]. Beijing: Science Press, 2014.(in Chinese))
    [6] 杜荣强, 林皋. 混凝土弹塑性多轴损伤模型及其应用[J]. 大连理工大学学报, 2007,47(4): 567-572.(DU Rong-qiang, LIN Gao. A multiaxial anisotropic elstoplastic damage model for concrete and its application[J]. Journal of Dalian University of Technology,2007,47(4): 567-572.(in Chinese))
    [7] 郑颖人, 孔亮, 刘元雪. 塑性本构理论与工程材料塑性本构关系[J]. 应用数学和力学, 2014,35(7): 713-722.(ZHENG Ying-ren, KONG Liang, LIU Yuan-xue. Plastic constitutive relation and plastic constitutive theory for engineering materials[J]. Applied Mathematics and Mechanics,2014,35(7): 713-722.(in Chinese))
    [8] 周洋靖, 冯志强, 宁坡. 双势理论用于处理非关联材料本构[J]. 应用数学和力学, 2015,36(8): 787-804.(ZHOU Yang-jing, FENG Zhi-qiang, NING Po. The bi-potential theory applied to non-associated constitutive laws[J]. Applied Mathematics and Mechanics,2015,36(8): 787-804.(in Chinese))
    [9] 俞茂宏. 线性和非线性的统一强度理论[J]. 岩石力学与工程学报, 2007,26(4): 662-669.(YU Mao-hong. Linear and nonlinear unified strength theory[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(4): 662-669.(in Chinese))
    [10] Resende L. A damage mechanics constitutive theory for the inelastic behavior of concrete[J]. Computer Methods in Applied Mechanics and Engineering,1987,60(1): 57-93.
    [11] Faria R, Oliver J, Cervera M. A strain-based plastic viscous-damage model for massive concrete structures[J]. International Journal of Solids and Structures,1998,35(14): 1533-1558.
    [12] Lee J, Fenves G L. A return-mapping algorithm for plastic-damage models: 3-D and plane stress formulation[J]. International Journal for Numerical Methods in Engineering,2001,50(2): 487-506.
    [13] Oliver J. A consistent characteristic length for smeared cracking models[J]. International Journal for Numerical Methods in Engineering,1989,28(2): 461-474.
    [14] Oliver J, Cervera M, Oller S, et al. Isotropic damage models and smeared crack analysis of concrete[C]//II International Conference on Computer Aided Analysis and Design of Concrete Structures, Sci-C’90.Zell am See, Austria ,1990.
    [15] Simo J C, Ju J W. Strain and stress-based continuum damage models—I: formulation[J]. International Journal of Solids and Structures,1987,23(7): 821-840.
    [16] Dhar S, Dixit P M, Sethuraman R. A continuum damage mechanics model for ductile fracture[J]. International Journal of Pressure Vessels and Piping, 2000,77(6): 335-344.
    [17] Gopalaratnam V S, Slah S P. Softening response of plain concrete in direct tension[J]. Aci Materials Journal,1985,82(3): 310-323.
    [18] Karsan I D, Jirsa J O. Behavior of concrete under compressive loadings[J]. Journal of the Structural Division,1969,95(12): 2543-2563.
    [19] Kupfer H, Hilsdorf H K, Rusch H. Behavior of concrete under biaxial stresses[J]. ACI Journals,1969, 66(8): 656-666.
    [20] Green S J, Swanson S R. Static constitutive relations for concrete: AFWL-TR-72-244[R]. US Air Force Weapons Laboratory, Kirtland Air Force Base, NM, 1973.
    [21] Meyer R, Ahrens H, Duddeck H. Material model for concrete in cracked and uncracked states[J]. Journal of Engineering Mechanics,1994,120(9): 1877-1895.
    [22] Petersson P E. Crack growth and development of fracture zones in plain concrete and similar materials: report No. TVBM-1006[R]. Sweden: Division of Building Materials, University of Lund, 1981.
  • 加载中
计量
  • 文章访问数:  932
  • HTML全文浏览量:  58
  • PDF下载量:  759
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-12
  • 修回日期:  2016-09-29
  • 刊出日期:  2017-02-15

目录

    /

    返回文章
    返回