留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合向量变分不等式标量化及间隙函数误差界

刘丹阳 蒋娅

刘丹阳, 蒋娅. 混合向量变分不等式标量化及间隙函数误差界[J]. 应用数学和力学, 2017, 38(6): 715-726. doi: 10.21656/1000-0887.370292
引用本文: 刘丹阳, 蒋娅. 混合向量变分不等式标量化及间隙函数误差界[J]. 应用数学和力学, 2017, 38(6): 715-726. doi: 10.21656/1000-0887.370292
LIU Dan-yang, JIANG Ya. Scalarization of Mixed Vector Variational Inequalities and Error Bounds of Gap Functions[J]. Applied Mathematics and Mechanics, 2017, 38(6): 715-726. doi: 10.21656/1000-0887.370292
Citation: LIU Dan-yang, JIANG Ya. Scalarization of Mixed Vector Variational Inequalities and Error Bounds of Gap Functions[J]. Applied Mathematics and Mechanics, 2017, 38(6): 715-726. doi: 10.21656/1000-0887.370292

混合向量变分不等式标量化及间隙函数误差界

doi: 10.21656/1000-0887.370292
基金项目: 国家自然科学基金(11371015);教育部科学技术重点项目(211163);四川省青年科技基金(2012JQ0035);四川省教育厅一般项目(16ZB0186)
详细信息
    作者简介:

    刘丹阳(1991—),男,硕士生(E-mail: 394898525@qq.com);蒋娅(1982—),女,讲师,硕士(通讯作者. E-mail: 576250051@qq.com).

  • 中图分类号: O178

Scalarization of Mixed Vector Variational Inequalities and Error Bounds of Gap Functions

Funds: The National Natural Science Foundation of China(11371015)
  • 摘要: 利用Konnov对变分不等式问题的标量化方法,对一般的强变分不等式(SVI)和弱变分不等式(WVI)进行了进一步的推广.主要介绍了基于集值映射的强广义混合向量变分不等式(SGMVVI)和弱广义混合向量变分不等式(WGMVVI),考虑了与它们相关的间隙函数,在合适的条件下讨论了强广义混合集值变分不等式(SGMVI)的间隙函数和SGMVVI的间隙函数之间的关系,以及WGMVVI和SGMVI的间隙函数之间的关系,最后讨论了它们的间隙函数的全局误差界.
  • [1] Konnov I V. A scalarization approach for vector variational inequalities with applications[J]. Journal of Global Optimization,2005,32(4): 517-527.
    [2] Soleimani-Damaneh M. The gap function for optimization problems in Banach spaces[J].Nonlinear Analysis: Theory, Methods & Applications,2007,69(2): 716-723.
    [3] FAN Jiang-hua, WANG Xiao-guo. Gap functions and global error bounds for set-valued variational inequalities[J]. Journal of Computational and Applied Mathematics,2010,233(11): 2956-2965.
    [4] Solodov M V. Merit functions and error bounds for generalized variational inequalities[J]. Journal of Mathematic Analysis and Applications,2003,287(2): 405-414.
    [5] LI Ming-hua. Error bounds of regularized gap functions for weak vector variational inequality problems[J]. Journal of Inequalities and Applications,2014,2014: 331.
    [6] Mastroeni G. Gap functions for equilibrium problems[J]. Journal of Global Optimization, 2003,27(4): 411-426.
    [7] Konnov I V. On the generalized vector variational inequality problem[J]. Journal of Mathematic Analysis and Applications,1997,206(1): 42-58.
    [8] Giannessi F. Theorems of the alternative, quadratic programs, and complementarity problems[M]//Cottle R W, Giannessi F, Lion J L, ed. Variational Inequality and Complementarity Problems.Chichester, England: John Wiley and Sons, 1980: 151-186.
    [9] ZHANG Wen-yan, CHEN Jia-wei, XU Shu, et al. Scalar gap functions and error bounds for generalized mixed vector equilibrium problems with applications[J]. Fixed Point Theory and Applications,2015,2015: 169.
    [10] Chen G Y. Existence of solutions for a vector variational inequality: an extension of Hartmann-Stampacchia theorem[J]. Journal of Optimization Theory and Application,1992,74(3): 445-456.
    [11] Yang X Q, Yao J C. Gap functions and existence of solutions to set-valued vector variational inequalities[J]. Journal of Optimization Theory and Application,2002,115(2): 407-417.
    [12] CHEN Guang-ya, YANG Xiao-qi. Vector complementarity problem and its equivalences with weak minimal element in ordered spaces[J]. Journal of Mathematic Analysis and Applications,1990,153(1): 136-158.
    [13] CHEN Guang-ya, CHENG Ging-min. Vector variational inequality and vector optimization problem[M]// Lecture Notes in Economics and Mathematical Systems . Springer-Verlag, Heidelberg, 1987,258: 408-416.
    [14] Chen G Y, Craven B D. A vector variational inequality and optimization over an efficient set[J]. Zeitschrift fur Operation Research,1990,34(1): 1-12.
    [15] Yang X Q. Vector variational inequality and its duality[J]. Nonlinear Analysis: Theory, Methods & Applications,1993,21(11): 869-877.
    [16] Yu S J, Yao J C. On vector variational inequalities[J]. Journal of Optimization Theory and Applications,1996,89(3): 749-769.
    [17] Li J, Mastroeni G. Vector variational inequalities involving set-valued mappings via scalarization with applications to error bounds for gap functions[J]. Journal of Optimization Theory and Application,2010,145(2): 355-372.
    [18] Li J, Huang N J, Yang X Q. Weak sharp minima for set-valued vector variational inequalitieswith an application[J]. European Journal of Operational Research,2010,205(2): 262-272.
    [19] TANG Guo-ji, HUANG Nan-jing. Gap function and global error bounds for set-valued mixed variational inequalities[J]. Taiwanese Journal of Mathematics,2013,17(4): 1267-1286.
    [20] Zalinescu C. Convex Analysis in General Vector Spaces [M]. World Scientific Publishing Co Inc, 2002.
    [21] Rockafellar R T, Wets R J-B. Variational Analysis [M]. Springer-Verlag Berlin Heidelberg, 1998.
    [22] Kneser H. Sur un theoreme fondamental de la theorie des jeux C R[J]. Academy Science Paris,1952,234: 2418-2420.
    [23] LI Guo-yin, TANG Chun-ming, WEI Zeng-xin. Error bound results for generalized D-gap functions of nonsmooth variational inequality problems[J]. Journal of Computational and Applied Mathematics,2010,233(11): 2795-2806.
    [24] Chen G Y, Goh C J, Yang X Q. On gap functions for vector variational inequalities[M]//Giannessi F, ed. Vector Variational Inequalities and Vector Equilibria. Nonconvex Optimization and Its Applications,Vol38. Springer US, 2000: 55-72.
    [25] 夏道行, 吴卓人, 严绍宗, 等. 实变函数与泛函分析[M]. 北京: 高等教育出版社, 1978.(XIA Dao-xin, WU Zhuo-ren, YAN Shao-zong, et al. Real Analysis and Functional Analysis [M]. Beijing: Higher Education Press, 1978.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  169
  • PDF下载量:  638
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-23
  • 修回日期:  2017-05-10
  • 刊出日期:  2017-06-15

目录

    /

    返回文章
    返回