## 留言板

 引用本文: 尹晓军, 杨联贵, 宋健, 张瑞岗, 杨红丽, 刘全生. 完整Coriolis力作用下带有外源强迫的非线性KdV方程[J]. 应用数学和力学, 2017, 38(9): 1053-1060.
YIN Xiao-jun, YANG Lian-gui, SONG Jian, ZHANG Rui-gang, YANG Hong-li>, LIU Quan-sheng. The Nonlinear KdV Equation Under External Forcing With the Complete Coriolis Force[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1053-1060. doi: 10.21656/1000-0887.370297
 Citation: YIN Xiao-jun, YANG Lian-gui, SONG Jian, ZHANG Rui-gang, YANG Hong-li>, LIU Quan-sheng. The Nonlinear KdV Equation Under External Forcing With the Complete Coriolis Force[J]. Applied Mathematics and Mechanics, 2017, 38(9): 1053-1060.

• 中图分类号: P401

## The Nonlinear KdV Equation Under External Forcing With the Complete Coriolis Force

Funds: The National Natural Science Foundation of China(11362012)；The National Science Fund for Young Scholars of China(11202092;11301592)
• 摘要: 利用摄动方法，从描写既有Coriolis力垂直分量又含有水平分量的位涡方程出发，给出了近赤道非线性Rossby波所满足的具有外源强迫的非线性KdV方程，并利用Jacobi椭圆函数展开法，求解了改进后的非线性KdV方程的行波解及孤立波解.通过分析KdV方程的行波解，指出Coriolis力的水平分量和外源对Rossby波动的影响.
•  [1] Long R R. Solitary waves in the Westerlies[J]. Journal of the Atmosphere Science,1964,21(3): 197-200. [2] Benney D J. Long nonlinear waves in fluid flows[J]. Journal of Mathematics and Physics,1966,45(1): 52-63. [3] Boyd J P. The effects of latitudinal shear on equatorial waves—part 1: theory and methods[J]. Journal of the Atmospheric Sciences,1978,35(12): 2236-2258. [4] Boyd J P. Equatorial solitary waves—part1: Rossby solitons[J]. Journal of Physical Oceanography,1980,10(11): 1699-1717. [5] Redekopp L G. On the theory of solitary Rossby waves[J]. Jounal of Fluid Mechanics,1977,82(4): 725-745. [6] Charney J G, Straus D M. Form-drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems[J]. Journal of the Atmospheric Sciences,1980,37(6): 1157-1176. [7] 赵强, 刘式达, 刘式适. 切变基本纬向流中非线性赤道Rossby长波[J]. 地球物理学报, 2000,43(6): 746-753.(ZHAO Qiang, LIU Shi-da, LIU Shi-kuo. Nonlinear equatorial Rossby long waves in a shear flow[J]. Chinese Journal of Geophysics,2000,43(6): 746-753.(in Chinese)) [8] 宋健, 杨联贵, 刘全生. 正压大气模式下具有β效应与地形效应的Rossby孤立波[J]. 地球物理学进展, 2012,27(2): 393-397.(SONG Jian, YANG Lian-gui, LIU Quan-sheng. Solitary Rossby waves with beta effect and topography effect in a barotropic atmospheric model[J]. Progress in Geophysics,2012,27(2): 393-397.(in Chinese)) [9] 巢纪平, 徐昭. 热带扰动在大尺度经圈中的行为[J]. 地球物理学报, 2008,51(6): 1657-1662.(CHAO Ji-ping, XU Zhao. The behavior of tropical disturbance in large-scale meridional flow[J]. Chinese Journal of Geophysics,2008,51(6): 1657-1662.(in Chinese)) [10] 刘萍, 李子良, 楼森岳. 一类耦合非线性Schrdinger方程的Painlevé性质、严格解及其在大气重力波中的应用[J]. 应用数学和力学, 2010,31(11): 1308-1329.(LIU Ping, LI Zi-liang, LOU Sen-yue. A class of coupled nonliear Schrdinger equation: Painlevé property, exact solutions and application to atmospheric gravity waves[J]. Applied Mathematics and Mechanics,2010,31(11): 1308-1329.(in Chinese)) [11] 张永垂, 张立凤. Rossby波模型对西北太平洋海表面高度年际变异的可预测性研究[J]. 海洋与湖沼, 2013,44(6): 1409-1417.(ZHANG Yong-chui, ZHANG Li-feng. Predictability to sea level interannual variability in the northwestern pacific by first-order baroclinic Rossby waves model[J]. Oceanologia et Limnologia Sinica,2013,44(6): 1409-1417.(in Chinese)) [12] 张永利, 杨联贵. 地形效应下正压准地转模式的能量守恒[J]. 应用数学和力学, 2016,37(9): 936-944.(ZHANG Yong-li, YANG Lian-gui. Conservation of energy in a barotropic quasi-geostrophic model under orographic effects[J]. Applied Mathematics and Mechanics,2016,37(9): 936-944.(in Chinese)) [13] 汪萍, 戴新刚. 外强迫作用下正压大气非线性特征数值模拟[J]. 物理学报, 2005,54(10): 4961-4970.(WANG Ping, DAI Xin-gang. Numerial modeling of non-linear characteristics for barotropic atmosphere with external forcing[J]. Acta Physica Sinica,2005,54(10): 4961-4970.(in Chinese)) [14] White A A, Hoskins B J, Roulstone I, et al. Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic[J].Quarterly Journal of the Royal Meteorological Society,2005,131(609): 2081-2107. [15] Philips N A. The equations of motion for a shallow rotating atmosphere and the “traditional approximation”[J].Journal of the Atmospheric Sciences,1966,23(5): 626-628. [16] White A A, Bromley R A. Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force[J]. Quarterly Journal of the Roynal Meteorological Society,1995,121(522): 399-418. [17] Burger A P. The potential vorticity equation: from planetary to small scale[J]. Tellus A,1991,43(3): 191-197. [18] Dellar P J, Salmon R. Shallow water equations with a complete Coriolis force and topography[J]. Physics of Fluids,2005,17(10): 106601. [19] Stewart A L, Dellar P J. The rle of the complete Coriolis force in cross-equatorial flow of abyssal ocean currents[J].Ocean Modelling,2011,38(3/4): 187-202. [20] Tort M, Dubos T. Dynamically consistent shallow-atmosphere equations with a complete Coriolis force[J]. Quarterly Journal of the Royal Meteorological Society,2014,140(684): 2388-2392. [21] 赵强, 于鑫. 完整Coriolis力作用下非线性Rossby波的精确解[J]. 地球物理学报, 2008,51(5): 1304-1308.(ZHAO Qiang, YU Xin. Exact solutions to the nonlinear Rossby waves with a complete representation of the Coriolis force[J]. Chinese Journal of Geophysics,2008,51(5): 1304-1308.(in Chinese)) [22] 杨洁, 赵强. 有完整Coriolis力和热源影响下超长波的解析解[J]. 物理学报, 2010,59(2): 750-753.(YANG Jie, ZHAO Qiang. Analytical solutions to ultra-long waves with the complete Coriolis force and heating[J]. Acta Physica Sinica,2010,59(2): 750-753.(in Chinese))

##### 计量
• 文章访问数:  502
• HTML全文浏览量:  82
• PDF下载量:  471
• 被引次数: 0
##### 出版历程
• 收稿日期:  2016-09-28
• 修回日期:  2016-11-08
• 刊出日期:  2017-09-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈