留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Udwadia-Kalaba理论的Hamel嵌入法研究

赵韩 赵晓敏 姜建满

赵韩, 赵晓敏, 姜建满. 基于Udwadia-Kalaba理论的Hamel嵌入法研究[J]. 应用数学和力学, 2017, 38(6): 696-707. doi: 10.21656/1000-0887.370327
引用本文: 赵韩, 赵晓敏, 姜建满. 基于Udwadia-Kalaba理论的Hamel嵌入法研究[J]. 应用数学和力学, 2017, 38(6): 696-707. doi: 10.21656/1000-0887.370327
ZHAO Han, ZHAO Xiao-min, JIANG Jian-man. Study on Hamel’s Embedding Method via the Udwadia-Kalaba Theory[J]. Applied Mathematics and Mechanics, 2017, 38(6): 696-707. doi: 10.21656/1000-0887.370327
Citation: ZHAO Han, ZHAO Xiao-min, JIANG Jian-man. Study on Hamel’s Embedding Method via the Udwadia-Kalaba Theory[J]. Applied Mathematics and Mechanics, 2017, 38(6): 696-707. doi: 10.21656/1000-0887.370327

基于Udwadia-Kalaba理论的Hamel嵌入法研究

doi: 10.21656/1000-0887.370327
基金项目: 对外科技合作项目(国际科技项目)(2014DFA80440)
详细信息
    作者简介:

    赵韩(1957—),男,博士,教授,博士生导师;赵晓敏(1986—),女,博士(通讯作者. E-mail: hfutzxm@163.com);姜建满(1986—),女,博士(E-mail: jiangjianman@126.com).

  • 中图分类号: O316

Study on Hamel’s Embedding Method via the Udwadia-Kalaba Theory

  • 摘要: Hamel嵌入法直接将约束嵌入到非约束运动的动能中去,从而避免使用Lagrange(拉格朗日)乘子.但这个简单、直观的方法却并不总是正确.Hamel认为这种方法可能导致错误的结果,然而他并没有给出Hamel嵌入法正确性的适用条件.在利用UdwadiaKalaba理论的基础上,提出了Hamel嵌入法成立的充要条件;指出了Rosenberg在Hamel嵌入法正确性研究中的不足,通过给出的具体算例可以看出,在完整约束下Hamel嵌入法可能不正确,而在非完整约束下也可能得出正确的结果;理论和实例分析表明,Hamel嵌入法是否成立除了与约束有关以外还与系统模型相关.
  • [1] Hamel G. Theoretische Mechanik [M]. Berlin: Springer, 1949.
    [2] 黄友钦, 林俊宏, 傅继阳, 等. 多重约束下空间桁架结构抗风优化[J]. 应用数学和力学, 2013,34(8): 824-835.(HUANG You-qin, LIN Jun-hong, FU Ji-yang, et al. Wind resistant optimization of spatial truss structures under multi-constraints[J]. Applied Mathematics and Mechanics,2013,34(8): 824-835.(in Chinese))
    [3] Blajer W. Projective formulation of Maggi’s method for nonholonomic systems analysis[J]. Journal of Guidance Control Dynamics,2015,15(2): 522-525.
    [4] CHEN Ye-hwa. Equations of motion of mechanical systems under servo constraints: the Maggi approach[J]. Mechatronics,2008,18(4): 208-217.
    [5] 乔永芬, 赵淑红. Poincaré-Chetaev变量下变质量非完整动力学系统的运动方程[J]. 物理学报, 2001,50(5): 805-810.(QIAO Yong-fen, ZHAO Shu-hong. Equations of motion of variable mass nonholonomic dynamical system in Poincaré-Chetaev variables[J]. Acta Physica Sinica,2001,50(5): 805-810.(in Chinese))
    [6] Brogliato B. Kinetic quasi-velocities in unilaterally constrained Lagrangian mechanics with impacts and friction[J]. Multibody System Dynamics,2013,32(2): 175-216.
    [7] Papastavridis J G. Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; for Engineers, Physicists, and Mathematicians [M]. New York: Oxford University Press, 2002.
    [8] Udwadia F E, Wanichanon T. Hamel’s paradox and the foundations of analytical dynamics[J]. Applied Mathematics and Computation,2010,217(3): 1253-1265.
    [9] Rosenberg R M. Analytical Dynamics of Discrete Systems [M]. New York: Plenum, 1977.
    [10] CHEN Ye-hwa. Hamel paradox and Rosenberg conjecture in analytical dynamics[J]. Journal of Applied Mechanics, 2013,80(4): 041001-1-041001-8.
    [11] CHEN Ye-hwa. Mechanical systems under servo constraints: the Lagrange’s approach[J]. Mechatronics,2005,15(3): 317-337.
    [12] 宋端. 一阶Lagrange系统平衡稳定性对参数的依赖关系[J]. 应用数学和力学, 2014,35(6): 692-696.(SONG Duan. Dependence of equilibrium stability of first order Lagrange systems on parameters[J]. Applied Mathematics and Mechanics,2014,35(6): 692-696.(in Chinese))
    [13] Kalaba R E, Udwadia F E. Lagrangian mechanics, Gauss’s principle, quadratic programming, and generalized inverses: new equations for nonholonomically constrained discrete mechanical systems[J]. Quarterly of Applied Mathematics,1994,52(2): 229-241.
    [14] Udwadia F E, Kalaba R E. An alternate proof for the equation of motion for constrained mechanical systems[J]. Applied Mathematics and Computation,1995,70(2): 339-342.
    [15] Udwadia F E, Kalaba R E, Eun H C. Equations of motion for constrained mechanical systems and the extended d’Alembert’s principle[J]. Quarterly of Applied Mathematics,1997,56(2): 321-331.
  • 加载中
计量
  • 文章访问数:  1343
  • HTML全文浏览量:  234
  • PDF下载量:  884
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-06-15

目录

    /

    返回文章
    返回