留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

关于高阶精度WCNS格式的无粘通量分裂方法

涂国华 陈坚强 毛枚良 赵晓慧 刘化勇

涂国华, 陈坚强, 毛枚良, 赵晓慧, 刘化勇. 关于高阶精度WCNS格式的无粘通量分裂方法[J]. 应用数学和力学, 2016, 37(12): 1324-1344. doi: 10.21656/1000-0887.370518
引用本文: 涂国华, 陈坚强, 毛枚良, 赵晓慧, 刘化勇. 关于高阶精度WCNS格式的无粘通量分裂方法[J]. 应用数学和力学, 2016, 37(12): 1324-1344. doi: 10.21656/1000-0887.370518
TU Guo-hua, CHEN Jian-qiang, MAO Mei-liang, ZHAO Xiao-hui, LIU Hua-yong. On the Splitting Methods of Inviscid Fluxes for Implementing High-Order Weighted Compact Nonlinear Schemes[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1324-1344. doi: 10.21656/1000-0887.370518
Citation: TU Guo-hua, CHEN Jian-qiang, MAO Mei-liang, ZHAO Xiao-hui, LIU Hua-yong. On the Splitting Methods of Inviscid Fluxes for Implementing High-Order Weighted Compact Nonlinear Schemes[J]. Applied Mathematics and Mechanics, 2016, 37(12): 1324-1344. doi: 10.21656/1000-0887.370518

关于高阶精度WCNS格式的无粘通量分裂方法

doi: 10.21656/1000-0887.370518
基金项目: 国家重点研发计划(2016YFA0401200);国家自然科学基金(11301525)
详细信息
    作者简介:

    涂国华,E-mail: ghtu@skla.cardc.cn

  • 中图分类号: O35

On the Splitting Methods of Inviscid Fluxes for Implementing High-Order Weighted Compact Nonlinear Schemes

Funds: National Key Research and Development Project of China (2016YFA0401200);National Natural Science Foundation of China (11301525)
  • 摘要: 高阶精度加权紧致非线性格式(WCNS)越来越广泛地应用于复杂流动数值模拟.WCNS可以与多种无粘通量分裂方法结合起来使用.但是,常见的通量分裂方法都是基于低阶格式发展起来的,目前还不清楚哪些通量分裂方法最适合WCNS,也不知道这些方法与高阶格式结合时将会产生什么效果.表面热流计算是高超声速流动数值模拟的难点之一,为了在热流计算时选择合适的通量,研究了多种通量分裂方法的耗散大小.每种通量都可以表示成中心部分与耗散部分之和.这些通量的中心部分相同且非常简单,但是耗散部分较为复杂,且不同的通量分裂方法可导致不同的耗散表达式.通过对通量耗散进行分析可以发现耗散大小与网格界面两侧的物理量跳跃近似线性正相关.数值计算表明高阶格式得到的网格界面左右两侧的物理量跳跃通常远比低阶格式小,因而带来的通量耗散小.通过3个典型算例考察了通量耗散对热流计算的影响,其中包括高超激波/边界层干扰算例.基于对van Leer通量、Steger-Warming通量、KFVS通量、Roe通量、AUSM类通量和HLL类通量的考察,给出了通量选择建议.
  • [1] Ekaterinaris J A. High-order accurate, low numerical diffusion methods for aerodynamics[J].Progress in Aerospace Sciences,2005,41(3/4): 192-300.
    [2] DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, ZHANG Han-xin, ZHANG Yi-feng. High-order and high accurate CFD methods and their applications for complex grid problems[J].Communications in Computational Physics,2012,11(4): 1081-1102.
    [3] DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, LIU Hua-yong, ZHANG Han-xin. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2011,230(4): 1100-1115.
    [4] DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, ZHANG Yi-feng, ZHANG Han-xin. Extending weighted compact nonlinear schemes to complex grids with characteristic-based interface conditions[J].AIAA Journal,2010,48(12): 2840-2851.
    [5] TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. Implementing high-order weighted compact nonlinear scheme on patched grids with a nonlinear interpolation[J].Computers & Fluids,2013,77: 181-193.
    [6] TU G, Deng X, Liu H, Zhao X. Validation of high-order weighted compact nonlinear scheme for heat transfer of complex hypersonic laminar flows[C]//The 4th Asian Symposium on Computational Heat Transfer and Fluid Flow.Hong Kong, 2013: ASCHT0095-T01-2-A.
    [7] Rizzetta D P, Viabal M R, Morgan P E. A high-order compact finite-difference scheme for large-eddy simulation of active flow control[J]. Progress in Aerospace Sciences,2008,44(6): 397-426.
    [8] Pirozzoli S. Numerical methods for high-speed flows[J].Annual Review of Fluid Mechanics, 2011,43: 163-194.
    [9] DENG Xiao-gang, ZHANG Han-xin. Developing high-order weighted compact nonlinear schemes[J].Journal of Computational Physics,2000,165(1): 22-44.
    [10] Cockburn B, Shu C. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J].Journal of Computational Physics,1998,141(2): 199-224.
    [11] TU Guo-hua, YUAN Xiang-jiang, XIA Zhi-qiang, HU Zhen. A class of compact upwind TVD difference schemes[J].Applied Mathematics and Mechanics,2006,27(6): 675-682.
    [12] TU Guo-hua, YUAN Xiang-jiang, LU Li-peng. Developing shock-capturing difference methods[J].Applied Mathematics and Mechanics,2007,28(4): 433-440.
    [13] TU Guo-hua, YUAN Xiang-jiang. A characteristic-based shock-capturing scheme for hyperbolic problems[J].Journal of Computational Physics,2007,225(2): 2083-2097.
    [14] Shu C. High order weighted essentially nonoscillatory schemes for convection dominated problems[J].SIAM Review,2009,51(1): 82-126.
    [15] Wang Z J. High-order methods for the Euler and Navier-Stokes equations on unstructured grids[J].Progress in Aerospace Sciences,2007,43(1/3): 1-41.
    [16] Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J].Journal of Computational Physics,1997,136(1): 83-99.
    [17] TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. Assessment of two turbulence models and some compressibility corrections for hypersonic compression corners by high-order difference schemes[J].Chinese Journal of Aeronautics,2012,25(1): 25-32.
    [18] XU Chuan-fu, DENG Xiao-gang, ZHANG Li-lun, FANG Jian-bin, WANG Guang-xue, JIANG Yi, GAO Wei, CHE Yong-gang, WANG Zheng-hua, LIU Wei, CHENG Xing-hua. Collaborating CPU and GPU for large-scale high-order CFD simulations with complex grids on the TianHe-1A supercomputer[J].Journal of Computational Physics,2014,278(1): 275-297.
    [19] Kitamura K. Afurther survey of shock capturing methods on hypersonic heating issues[C]//21st AIAA Computational Fluid Dynamics Conference . San Diego, CA, 2013: 2013-2698.
    [20] Kitamura K, Shima E, Roe P L. Carbuncle phenomena and other shock anomalies in three dimensions[J].AIAA Journal,2012,50(12): 2655-2669.
    [21] Kitamura K, Roe P, Ismail F. Evaluation of Euler fluxes for hypersonic flow computations[J].AIAA Journal,2009,47(1): 44-53.
    [22] Kitamura K, Shima E, Nakamura Y, Roe P. Evaluation of Euler fluxes for hypersonic heating computations[J].AIAA Journal,2010,48(4): 763-776.
    [23] TU Guo-hua, ZHAO Xiao-hui, MAO Mei-liang, CHEN Jian-qiang, DENG Xiao-gang, LIU Hua-yong. Evaluation of Euler fluxes by a high-order CFD scheme: shock instability[J].International Journal of Computational Fluid Dynamics,2014,28(5): 171-186.
    [24] Pandolfi M, D’Ambrosio D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J].Journal of Computational Physics,2001,166(2): 271-301.
    [25] van Leer B. Flux-vector splitting for the Euler equation[M]// Upwind and High-Resolution Schemes . Berlin: Springer Berlin Heidelberg, 1997: 80-89.
    [26] Steger J L, Warming R F. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods[J].Journal of Computational Physics,1981,40(2): 263-293.
    [27] Mandal J C, Deshpande S M. Kinetic flux vector splitting for Euler equations[J].Computers & Fluids,1994,23(2): 447-478.
    [28] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics,1981,43(2): 357-372.
    [29] Liou M S. Mass flux schemes and connection to shock instability[J].Journal of Computational Physics,2000,160(2): 623-648.
    [30] Kim K H, Lee J H, Rho O H. An improvement of AUSM schemes by introducing the pressure-based weight functions[J].Computers & Fluids,1998,27(3): 311-346.
    [31] Kim K H, Kim C, Rho O H. Methods for the accurate computations of hypersonic flows—I: AUSMPW+ scheme[J].Journal of Computational Physics,2001,174(1): 38-80.
    [32] Einfeldt B, Munz C D, Roe P L, Sjgreen B. On Godunov-type methods near low densities[J].Journal of Computational Physics,1991,92(2): 273-295.
    [33] Harten A, Lax P D, van Leer B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[M]// Upwind and High-Resolution Schemes.Berlin: Springer Berlin Heidelberg, 1997: 53-79.
    [34] Batten P, Clarke N, Lambert C, Causon D M. On the choice of wavespeeds for the HLLC Riemann solver[J].SIAM Journal on Scientific Computing,1997,18(6): 1553-1570.
    [35] Toro E F.Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction[M]. 3rd ed. Springer, 2009.
    [36] ZHANG Han-xin, ZHUANG Feng-gan. NND schemes and their applications to numerical simulation of two- and three-dimensional flows[J].Advances in Applied Mechanics,1991,29: 193-256.
    [37] TU Guo-hua, DENG Xiao-gang, MAO Mei-liang. A staggered non-oscillatory finite difference method for high-order discretization of viscous terms[J].Acta Aerodynamica Sinica,2011,29(1): 10-15.
    [38] DENG Xiao-gang, MAO Mei-liang, TU Guo-hua, LIU Hua-yong, ZHANG Han-xin. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J].Journal of Computational Physics,2011,230(4): 1100-1115.
    [39] Kopriva D A. Spectral solution of the viscous blunt-body problem[J].AIAA Journal,1993,31(7): 1235-1242.
    [40] Longo J M A, Hannemann K, Hannemann V. The challenge of modeling high speed flows[C]// The EUROSIM.2007.
    [41] Holden M S, Wadhams T P. A database of aerothermal measurements in hypersonic flow “building block” experiment for CFD validation[C]//41st AIAA Aerospace Sciences Meeting and Exhibit.Reno, Nevada, 2003: AIAA 2003-1137.
    [42] Kirk B S, Carey G F. Validation of fully implicit, parallel finite element simulations of laminar hypersonic flows[J].AIAA Journal,2010,48(6): 1025-1036.
  • 加载中
计量
  • 文章访问数:  760
  • HTML全文浏览量:  56
  • PDF下载量:  621
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-16
  • 修回日期:  2016-12-01
  • 刊出日期:  2016-12-15

目录

    /

    返回文章
    返回