留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进自适应混沌控制的逆可靠度分析方法

李彬 郝鹏 孟增 李刚

李彬, 郝鹏, 孟增, 李刚. 基于改进自适应混沌控制的逆可靠度分析方法[J]. 应用数学和力学, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001
引用本文: 李彬, 郝鹏, 孟增, 李刚. 基于改进自适应混沌控制的逆可靠度分析方法[J]. 应用数学和力学, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001
LI Bin, HAO Peng, MENG Zeng, LI Gang. An Improved Adaptive Chaos Control Method for Inverse Reliability Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001
Citation: LI Bin, HAO Peng, MENG Zeng, LI Gang. An Improved Adaptive Chaos Control Method for Inverse Reliability Analysis[J]. Applied Mathematics and Mechanics, 2017, 38(9): 979-987. doi: 10.21656/1000-0887.380001

基于改进自适应混沌控制的逆可靠度分析方法

doi: 10.21656/1000-0887.380001
基金项目: 国家重点基础研究发展计划(973计划)(2014CB046506;2014CB046803); 国家自然科学基金(11372061;11402049;11602076)
详细信息
    作者简介:

    李彬(1988—),男,博士生(E-mail: libindlut2007@126.com);李刚(1966—),男,教授,博士,博士生导师(通讯作者. E-mail: ligang@dlut.edu.cn).

  • 中图分类号: TB114.3; O213.2

An Improved Adaptive Chaos Control Method for Inverse Reliability Analysis

Funds: The National Basic Research Program of China (973 Program)(2014CB046506;2014CB046803);The National Natural Science Foundation of China(11372061;11402049;11602076)
  • 摘要: 自适应混沌控制方法是一种高效、稳健的逆可靠度分析方法,但在求解强非线性凹功能函数时,计算效率仍然有待提高,且可能会陷入局部最优.通过对混沌控制因子更新策略进行改进,提出了基于改进自适应混沌控制的逆可靠度分析方法.数值算例分析表明:该方法能够有效地改善混沌控制因子自适应选取时的合理性,具有更好的收敛性和更高的计算效率,为结构可靠度分析和可靠度优化问题提供了更加高效、稳健的求解途径.
  • [1] Tu J, Choi K K, Park Y H. A new study on reliability-based design optimization[J]. Journal of Mechanical Design,1999,121(4): 557-564.
    [2] Yang R J, Gu L. Experience with approximate reliability-based optimization methods[J]. Structural and Multidisciplinary Optimization,2004,26(1): 152-159.
    [3] Chiralaksanakul A, Mahadevan S. First-order approximation methods in reliability-based design optimization[J]. Journal of Mechanical Design,2005,127(5): 851-857.
    [4] Zou T, Mahadevan S. A direct decoupling approach for efficient reliability-based design optimization[J]. Structural and Multidisciplinary Optimization,2006,31(3): 190-200.
    [5] 李刚, 孟增. 基于RBF神经网络模型的结构可靠度优化方法[J]. 应用数学和力学, 2014,35(11): 1271-1279. (LI Gang, MENG Zeng. Reliability-based design optimization with the RBF neural network model[J]. Applied Mathematics and Mechanics,2014,35(11): 1271-1279. (in Chinese))
    [6] Nikolaidis E, Burdisso R. Reliability based optimization: a safety index approach[J]. Computers & Structures,1988,28(6): 781-788.
    [7] 杜秀云, 薛齐文, 刘旭东. 基于Bregman距离函数的可靠性分析[J]. 应用数学和力学, 2016,37(6): 609-616. (DU Xiu-yun, XUE Qi-wen, LIU Xu-dong. Reliability analysis based on Bregman distances[J]. Applied Mathematics and Mechanics,2016,37(6): 609-616. (in Chinese))
    [8] 吉猛, 姜潮, 韩硕. 一种基于同伦分析的结构可靠性功能度量法[J]. 计算力学学报, 2015,32 (2): 149-153. (JI Meng, JIANG Chao, HAN Shuo. An performance measure approach of structural reliability based on homotopy analysis[J]. Chinese Journal of Computational Mechanics,2015,32 (2): 149-153. (in Chinese))
    [9] 钱云鹏, 涂宏茂, 刘勤, 等. 结构逆可靠度最可能失效点的改进搜索算法[J]. 工程力学, 2013,30(1): 394-399. (QIAN Yun-peng, TU Hong-mao, LIU Qin, et al. Improved search algorithm for most probable point of structural inverse reliability[J]. Engineering Mechanics,2013,30(1): 394-399. (in Chinese))
    [10] Youn B D, Choi K K, DU Liu. Enriched performance measure approach for reliability-based design optimization[J]. AIAA Journal,2005,43(4): 874-884.
    [11] Youn B D, Choi K K. An investigation of nonlinearity of reliability-based design optimization approaches[J]. Journal of Mechanical Design,2004,126(3): 403-411.
    [12] der Kiureghian A, ZHANG Yan, LI Chun-ching. Inverse reliability problem[J]. Journal of Engineering Mechanics,1994,120(5): 1154-1159.
    [13] LI Hong, Foschi R O. An inverse reliability method and its application[J]. Structural Safety,1998,20(3): 257-270.
    [14] CHENG Geng-dong, XU Lin, JIANG Lei. A sequential approximate programming strategy for reliability-based structural optimization[J]. Computers & Structures,2006,84(21): 1353-1367.
    [15] YANG Di-xiong, YI Ping. Chaos control of performance measure approach for evaluation of probabilistic constraints[J]. Structural and Multidisciplinary Optimization,2009,38(1): 83-92.
    [16] Youn B D, Choi K K, Park Y H. Hybrid analysis method for reliability-based design optimization[J]. Journal of Mechanical Design,2003,125(2): 221-232.
    [17] Youn B D, Choi K K, DU Liu. Adaptive probability analysis using an enhanced hybrid mean value method[J]. Structural and Multidisciplinary Optimization,2005,29(2): 134-148.
    [18] MENG Zeng, LI Gang, WANG Bo-ping, et al. A hybrid chaos control approach of the performance measure functions for reliability-based design optimization[J]. Computers & Structures,2015,146: 32-43.
    [19] LI Gang, MENG Zeng, HU Hao. An adaptive hybrid approach for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization,2015,51(5): 1051-1065.
    [20] Keshtegar B, Lee I. Relaxed performance measure approach for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization,2016,54(6): 1439-1454.
    [21] YI Ping, ZHU Zuo. Step length adjustment iterative algorithm for inverse reliability analysis[J]. Structural and Multidisciplinary Optimization,2016,54(4): 999-1009.
    [22] JIANG Chao, HAN Shuo, JI Meng, et al. A new method to solve the structural reliability index based on homotopy analysis[J]. Acta Mechanica,2015,226(4): 1067-1083.
  • 加载中
计量
  • 文章访问数:  576
  • HTML全文浏览量:  60
  • PDF下载量:  1444
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-03
  • 修回日期:  2017-03-08
  • 刊出日期:  2017-09-15

目录

    /

    返回文章
    返回