留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类时滞Solow模型的动态周期波动分析

李佼瑞 张艳霞

李佼瑞, 张艳霞. 一类时滞Solow模型的动态周期波动分析[J]. 应用数学和力学, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184
引用本文: 李佼瑞, 张艳霞. 一类时滞Solow模型的动态周期波动分析[J]. 应用数学和力学, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184
LI Jiaorui, ZHANG Yanxia. Dynamic Cycle Analysis of a Solow Model With Time Delays[J]. Applied Mathematics and Mechanics, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184
Citation: LI Jiaorui, ZHANG Yanxia. Dynamic Cycle Analysis of a Solow Model With Time Delays[J]. Applied Mathematics and Mechanics, 2018, 39(3): 334-342. doi: 10.21656/1000-0887.380184

一类时滞Solow模型的动态周期波动分析

doi: 10.21656/1000-0887.380184
基金项目: 国家自然科学基金(11572231); 陕西省教育厅专项科研计划项目(16JK1301)
详细信息
    作者简介:

    李佼瑞(1973—),男,教授,博士(通讯作者. E-mail: jiaoruili@xaufe.edu.cn);张艳霞(1988—),女,硕士生(E-mail: zhangyanxia1314@126.com).

  • 中图分类号: O211.63

Dynamic Cycle Analysis of a Solow Model With Time Delays

Funds: The National Natural Science Foundation of China(11572231)
  • 摘要: 考虑到资本生产投资和污染治理投资的时滞性,为分析其对经济环境系统动态演化的影响机理,基于经典的Solow模型,引入环境净化和两个投资时滞参数.首次提出了带有环境净化的双时滞Solow模型,并分析了该模型的动态周期波动行为.结果表明:无论单个投资时滞还是两个投资时滞,均能诱发经济周期的产生;时滞越大,经济周期波动越强烈;通过调整投资决策可达到预期均衡目标,实现经济环境系统的周期稳定运行.
  • [1] KARRAS G. Land and population growth in the Solow growth model: some empirical evidence[J].Economics Letters,2010,109(2): 66-68.
    [2] GUERRINI L. The Solow-Swan model with a bounded population growth rate[J]. Journal of Mathematical Economics,2006,42(1): 14-21.
    [3] STAMOVA I M, STAMOV A G. Impulsive control on the asymptotic stability of the solutions of a Solow model with endogenous labor growth[J]. Journal of the Franklin Institute,2012,349(8): 2707-2716.
    [4] 熊俊. 经济增长因素分析模型: 对索洛模型的一个扩展[J]. 数量经济技术经济研究, 2005,22(8): 25-34.(XIONG Jun. Analytical model of economic growth factors: an expansion of Solow model[J]. The Journal of Quantitative & Technical Economics,2005,22(8): 25-34.(in Chinese))
    [5] BROCK W A, TAYLOR M S. The Green Solow model[J]. Journal of Economic Growth,2010,15(2): 127-153.
    [6] 魏立桥, 赵晓娜, 景文宏. 基于环境污染的经济增长模型——以广东省为例[J]. 软科学, 2008,22(2): 54-56.(WEI Liqiao, ZHAO Xiaona, JING Wenhong. Economic growth model based on environmental pollution—taking Guangdong province as an example[J]. Soft Science,2008,22(2): 54-56.(in Chinese))
    [7] ANTOCI A, RUSSU P, SORDI S, et al. Industrialization and environmental externalities in a Solow-type model[J]. Journal of Economic Dynamics and Control,2014,47(6): 211-224.
    [8] CELLINI R. Implications of Solow’s growth model in the presence of a stochastic steady state[J]. Journal of Macroeconomics,1997,19(1): 135-153.
    [9] LEI Dongxia, HUANG Yongzhong. Stationary distribution of stochastic Solow model[J]. Mathematica Application,2014,27(4): 775-778.
    [10] 李佼瑞, 张艳霞. 带有环境净化的双随机参数Solow模型的稳定性[J]. 统计与信息论坛, 2016,31(6): 7-13.(LI Jiaorui, ZHANG Yanxia. The stability of the Solow model with double random parameters based on environmental purification[J]. Statistics and Information Forum,2016,31(6): 7-13.(in Chinese))
    [11] 毕志伟, 胡适耕, 梅正阳. 一个时滞经济增长模型的动态分析[J]. 华中科技大学学报, 2001,29(9): 109-111.(BI Zhiwei, HU Shigeng, MEI Zhengyang. Dynamical analysis on the model for economic growth with delay[J]. Journal of Huazhong University of Science and Technology,2001,29(9): 109-111.(in Chinese))
    [12] YU Y, HAN X, ZHANG C, et al. Mixed-mode oscillations in a nonlinear time delay oscillator with time varying parameters[J]. Communications in Nonlinear Science and Numerical Simulation,2017,47: 23-34.
    [13] WU X P. Zero-Hopf bifurcation analysis of a Kaldor-Kalecki model of business cycle with delay[J]. Nonlinear Analysis: Real World Applications,2012,13(2): 736-754.
    [14] LIU C, LU N, ZHANG Q. Dynamical analysis in a hybrid bioeconomic system with multiple time delays and strong Allee effect[J]. Mathematics and Computers in Simulation,2017,136: 104-131.
    [15] 王万永, 陈丽娟. 具有时滞耦合的n个Van der Pol振子弱共振双Hopf分岔[J]. 应用数学和力学, 2013,34(7): 764-770.(WANG Wanyong, CHEN Lijuan. Weak resonant double Hopf bifurcation of n Van del Pol oscillators with delay coupling[J]. Applied Mathematics and Mechanics,2013,34(7):764-770.(in Chinese))
    [16] PASCHE M. Technical progress, structural change and the environmental Kuznets curve[J]. Ecological Economics,2002,42(3): 381-389.
    [17] 陈六君, 毛潭, 刘为, 等. 环境恶化与经济衰退的动力学模型[J]. 北京师范大学学报(自然科学版), 2004,40(5): 617-622.(CHEN Liujun, MAO Tan, LIU wei, et al. A dynamic model on environmental degradation and economic recession[J]. Journal of Beijing Normal University(Natural Science),2004,40(5): 617-622.(in Chinese))
  • 加载中
计量
  • 文章访问数:  670
  • HTML全文浏览量:  42
  • PDF下载量:  594
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2018-01-04
  • 刊出日期:  2018-03-15

目录

    /

    返回文章
    返回