留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种避开大转动奇异点的角速度数值积分方法

张志刚 侯俊剑 齐朝晖

张志刚, 侯俊剑, 齐朝晖. 一种避开大转动奇异点的角速度数值积分方法[J]. 应用数学和力学, 2018, 39(4): 452-461. doi: 10.21656/1000-0887.380222
引用本文: 张志刚, 侯俊剑, 齐朝晖. 一种避开大转动奇异点的角速度数值积分方法[J]. 应用数学和力学, 2018, 39(4): 452-461. doi: 10.21656/1000-0887.380222
ZHANG Zhigang, HOU Junjian, QI Zhaohui. A Numerical Integration Method for Angular Velocity Vectors to Avoid Singularity of Large Rotation[J]. Applied Mathematics and Mechanics, 2018, 39(4): 452-461. doi: 10.21656/1000-0887.380222
Citation: ZHANG Zhigang, HOU Junjian, QI Zhaohui. A Numerical Integration Method for Angular Velocity Vectors to Avoid Singularity of Large Rotation[J]. Applied Mathematics and Mechanics, 2018, 39(4): 452-461. doi: 10.21656/1000-0887.380222

一种避开大转动奇异点的角速度数值积分方法

doi: 10.21656/1000-0887.380222
基金项目: 国家自然科学基金(11602228;51505433)
详细信息
    作者简介:

    张志刚(1984—),男,讲师,博士(通讯作者. E-mail: zhigangzhang@foxmail.com).

  • 中图分类号: O302

A Numerical Integration Method for Angular Velocity Vectors to Avoid Singularity of Large Rotation

Funds: The National Natural Science Foundation of China(11602228;51505433)
  • 摘要: 采用三参数描述有限转动会不可避免的遇到奇异性问题,这给由角速度积分求解转动参数带来了数值困难.系统地研究了采用转动矢量描述空间大转动的奇异性问题,在此基础上提出了一种避开转动矢量奇异点的数值积分方法.利用方向相同、模相差2π的两个转动矢量对应同一有限转动这一性质,在数值积分过程中将靠近奇异点的转动矢量切换到与之对应但远离奇异点的数值稳定区,从而避开了转动矢量奇异性给角速度数值积分带来的困难.数值算例表明所提方法简单、稳定、有效.
  • [1] 王德春, 芮健, 张杰. 捷联惯性导航系统姿态算法综述[J]. 战术导弹控制技术, 2009,31(2): 41-44.(WANG Dechun, RUI Jian, ZHANG Jie. A review of attitude algorithms of strapdown inertial navigation system[J]. Control Technology of Tactical Missile,2009,31(2): 41-44.(in Chinese))
    [2] 刘延柱, 洪嘉振, 杨海兴. 多刚体系统动力学[M]. 北京: 高等教育出版社, 1989.(LIU Yanzhu, HONG Jiazhen, YANG Haixing. Rigid Multibody System Dynamics [M]. Beijing: Higher Education Press, 1989.(in Chinese))
    [3] 洪嘉振. 计算多体系统动力学[M]. 北京: 高等教育出版社, 1999.(HONG Jiazhen. Computational Dynamics of Multibody Systems [M]. Beijing: Higher Education Press, 1999.(in Chinese))
    [4] SIMO J C. A finite strain beam formulation, the three-dimensional dynamic problem: part I[J]. Computer Methods in Applied Mechanics and Engineering,1985,49(1): 55-70.
    [5] SIMO J C, VU-QUOC L. A three-dimensional finite-strain rod model, part II: computational aspects[J]. Computer Methods in Applied Mechanics and Engineering,1986,58(1): 79-116.
    [6] ZUPAN D, SAJE M. Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures[J]. Computer Methods in Applied Mechanics and Engineering,2003,192(49/50): 5209-5248.
    [7] ZUPAN D, SAJE M. The three-dimensional beam theory: finite element formulation based on curvature[J]. Computers & Structures,2003,81(18/19): 1875-1888.
    [8] 张志刚, 齐朝晖, 吴志刚. 基于曲率插值的大变形梁单元[J]. 应用数学和力学, 2013,34(6):620-629.(ZHANG Zhigang, QI Zhaohui, WU Zhigang. Large deformation beam element based on curvature interpolation[J]. Applied Mathematics and Mechanics,2013,34(6): 620-629.(in Chinese))
    [9] 张志刚, 齐朝晖, 吴志刚. 一种基于应变插值大变形梁单元的刚-柔耦合动力学分析[J]. 振动工程学报, 2015,28(3): 337-344.(ZHANG Zhigang, QI Zhaohui, WU Zhigang. Rigid-flexible dynamics analysis of a large deformation beam element based on interpolation of strains[J]. Journal of Vibration Engineering,2015,28(3): 337-344.(in Chinese))
    [10] 黄雪樵. 克服欧拉方程奇异性的双欧法[J]. 飞行力学, 1994,12(4): 28-37.(HUANG Xueqiao. The dual-Euler method for overcoming the singularity of Euler equation[J]. Flight Dynamics,1994,12(4): 28-37.(in Chinese))
    [11] 周伟, 张晓今, 寇保华, 秦子增. 双欧法在克服伞-弹系统欧拉方程奇异性中的应用[J]. 航天返回与遥感, 2003,24(3): 4-8.(ZHOU Wei, ZHANG Xiaojin, KOU Baohua, et al. The application of the dual-Euler method for overcoming the singularity of Euler equation in parachute-missile system[J]. Spacecraft Recovery & Remote Sensing,2003,24(3): 4-8.(in Chinese))
    [12] 孙丽, 秦永元. 捷联惯导系统姿态算法比较[J]. 中国惯性技术学报, 2006,14(3): 6-10.(SUN Li, QIN Yongyuan. Comparison of attitude algorithms of SINS[J]. Journal of Chinese Inertial Technology,2006,14(3): 6-10.(in Chinese))
    [13] 李跃军, 阎超. 飞行器姿态角解算的全角度双欧法[J]. 北京航空航天大学学报, 2007,33(5): 505-508.(LI Yuejun, YAN Chao. Improvement of dual-Euler method for full scale Eulerian angles solution of aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(5): 505-508.(in Chinese))
    [14] 王勇军, 秦永元, 杨波. 四元数、Rodrigues参数在卫星姿态解算上的对比研究[J]. 中国空间科学技术, 2007,27(3): 18-23.(WANG Yongjun, QIN Yongyuan, YANG Bo. Comparison of quaternion and Rodrigues parameters on attitude algorithm of secondary planet[J]. Chinese Space Science and Technology,2007,27(3): 18-23.(in Chinese))
    [15] 张荣辉, 贾宏光, 陈涛, 等. 基于四元数法的捷联式惯性导航系统的姿态解算[J]. 光学精密工程, 2008,16(10): 1963-1970.(ZHANG Yonghui, JIA Hongguang, CHEN Tao, et al. Attitude solution for strapdown inertial navigation system based on quaternion algorithm[J]. Optics and Precision Engineering,2008,16(10): 1963-1970.(in Chinese))
    [16] BAUCHAU O A, TRAINELLI L. The vectorial parameterization of rotation[J]. Nonlinear dynamics,2003,32(1): 71-92.
    [17] ZUPAN E, SAJE M. Integrating rotation from angular velocity[J]. Advances in Engineering Software,2011,42(9): 723-733.
    [18] 齐朝晖. 多体系统动力学[M]. 北京: 科学出版社, 2008.(QI Zhaohui. Dynamics of Multibody Systems [M]. Beijing: Science Press, 2008.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1405
  • HTML全文浏览量:  266
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-04
  • 修回日期:  2017-10-06
  • 刊出日期:  2018-04-15

目录

    /

    返回文章
    返回