留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑浅埋破坏的拖曳锚在黏土中安装运动特性分析

毋晓妮 胡存 李晔

毋晓妮, 胡存, 李晔. 考虑浅埋破坏的拖曳锚在黏土中安装运动特性分析[J]. 应用数学和力学, 2018, 39(10): 1137-1148. doi: 10.21656/1000-0887.380226
引用本文: 毋晓妮, 胡存, 李晔. 考虑浅埋破坏的拖曳锚在黏土中安装运动特性分析[J]. 应用数学和力学, 2018, 39(10): 1137-1148. doi: 10.21656/1000-0887.380226
WU Xiaoni, HU Cun, LI Ye. Kinematic Analysis on Drag Anchor Installation in Clay Considering Shallow Failure Effects[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1137-1148. doi: 10.21656/1000-0887.380226
Citation: WU Xiaoni, HU Cun, LI Ye. Kinematic Analysis on Drag Anchor Installation in Clay Considering Shallow Failure Effects[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1137-1148. doi: 10.21656/1000-0887.380226

考虑浅埋破坏的拖曳锚在黏土中安装运动特性分析

doi: 10.21656/1000-0887.380226
基金项目: 国家自然科学基金(51809165;51309213)
详细信息
    作者简介:

    毋晓妮(1986—),女,博士(通讯作者. E-mail: wuxiaoni@sjtu.edu.cn).

  • 中图分类号: TU473

Kinematic Analysis on Drag Anchor Installation in Clay Considering Shallow Failure Effects

Funds: The National Natural Science Foundation of China(51809165;51309213)
  • 摘要: 拖曳锚是海洋工程中一种常见的系泊基础,因造价低廉和高承载特性而得到广泛应用.其在海床中的安装轨迹和运动特性受到锚与土体之间复杂相互作用的影响,使得精确定位仍存在挑战.目前已有的塑性屈服面方法被广泛用于计算拖曳锚的运动特性,即假设整个拖曳过程为深埋板在不同深度的破坏过程.实际上,拖曳锚的安装是从浅埋到深埋的连续贯入,因此该方法不能考虑浅埋破坏对拖曳锚运动特性的影响,从而可能导致预测的轨迹不准确.通过有限元分析研究了锚板方位角及埋深比对单向承载和复合荷载下屈服面的影响,确定了锚板浅埋破坏时的屈服面,补充了塑性屈服面法对浅埋破坏效应的考虑;进一步地,考察了锚板方位角、承载系数、浅埋区域大小对拖曳锚轨迹预测和运动特性的影响,并与传统仅假设深埋破坏情况对比分析.结果表明:浅埋破坏时锚板方位角与浅埋区域大小决定了锚板的运动特性和轨迹;合理考虑浅埋破坏后,与纯假设深埋破坏情况比,锚板在达到稳定状态之前的预测埋深和锚链力要小,但极限嵌入深度一致.
  • [1] 岳艳召, 张炜, 刘海笑. 拖曳锚与安装缆绳相互作用力计算方法研究[J]. 岩土力学, 2013,34(11): 503-512.(YUE Yanzhao, ZHANG Wei, LIU Haixiao. Study of calculation for interactional force between drag anchor and installation cable[J]. Rock and Soil Mechanics,2013,34(11): 503-512.(in Chinese))
    [2] Vryhof Anchors. Anchor manual 2015: the guide to anchoring[Z]. Netherlands, 2015.
    [3] Bruce Anchors. Brochure of Bruce FFTS MK 4[Z]. Douglas, England: Bruce Anchor Limited.
    [4] STEWART W P. Drag embedment anchor performance prediction in soft soils[C]// Proceedings of the 24th Annual Offshore Technology Conference.Houston, Texas, USA, 1992.
    [5] NEUBECKER S R, RANDOLPH M F. The performance of drag anchor and chain systems in cohesive soil[J]. Marine Georesources and Geotechnology,1996,14(2): 77-96.
    [6] DAHLBERG R. Design procedures for deep water anchors in clay[C]//Proceedings of the 30th Annual Offshore Technology Conference.Houston, Texas, USA, 1998.
    [7] THORNE C P. Penetration and load capacity of marine drag anchors in softclay[J]. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(10): 945-953.
    [8] KIM B M. Upper bound analysis for drag anchors in soft clay[D]. PhD Thesis. Texas: Texas A&M University, 2005.
    [9] AUBENY C P, CHI C. Mechanics of drag embedment anchors in a soft seabed[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,136(1): 57-68.
    [10] BRANSBY M F, O’NEILL M P.Drag anchor fluke-soil interaction in clays[C]//PANDE G N, PIETRUSZCZAK S, SCHWEIGER H F, ed. Numerical Models in Geomechanics (NUMOG VII).Netherlands: CRC Press, 1999: 489-494.
    [11] O’NEILL M P, BRANSBY M F, RANDLPH M F. Drag anchor fluke soil interaction in clays[J]. Canadian Geotechnical Journal,2003,40(1): 78-94.
    [12] ELKHATIB S,RANDOLPH M F. The effect of interface friction on the performance of drag-in plate anchors[C]// Proceedings of 1st International Symposium on Frontiers in Offshore Geotechnics. Perth, Western Australia: Taylor & Francis, 2005.
    [13] ELKHATIB S. The behaviour of drag-in plate anchors in soft cohesive soils[D]. PhD Thesis.Australia: University of Western Australia, 2006.
    [14] ZHAO Y B, LIU H X. Numerical simulation of drag anchor installation by a large deformation finite element technique[C]//Proceedings of the ASEM 2014, 33rd International Conference on Ocean, Offshore and Arctic Engineering.San Francisco, California, USA, 2014.
    [15] 李培冬, 刘海笑, 赵燕兵. 拖曳锚在海床中运动特性的大变形有限元分析[J]. 海洋工程, 2016,34(2): 56-63.(LI Peidong, LIU Haiyan, ZHAO Yanbing. Large deformation finite element analysis on the kinematic behavior of drag anchors in the seabed[J].Ocean Engineering,2016,34(2): 56-63.(in Chinese))
    [16] DUTTA A. A simple method of analyzing mooring chains with embedded anchor point[J]. Journal of Offshore Mechanics and Arctic Engineering,1988,110(1): 71-73.
    [17] 张炜, 刘海笑. 拖曳锚嵌入机理及运动特性实验研究[J]. 东南大学学报(自然科学版), 2010,〖STHZ〗 40(3): 581-586.(ZHANG Wei, LIU Haixiao. Experimental research for embedment mechanism and kinematic characteristics of drag anchors[J].Journal of Southeast University (Natural Sciences),2010,40(3): 581-586.(in Chinese))
    [18] GAULT J A, COX W R. Method for predicting geometry and load distribution in an anchor chain from a single point mooring buoy to a buried anchorage[C]// Proceeding of the 6th Annual Offshore Technology Conference.Houston, Texas, USA, 1974.
    [19] VIVATRAT V, VALENT P J, PONTERIO A A. The influence of chain friction on anchor pile design[C]// Proceedings of the 14th Annual Offshore Technology Conference.Houston, Texas, USA, 1982.
    [20] CASSIDY M J, GAUDIN C,RANDOLPH M F, et al. A plasticity model to assess the keying of plate anchors[J]. Géotechnique,2012,62(9): 825-836.
    [21] YANG M, MURFF J D, AUBENY C P. Undrained capacity of plate anchors under general loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(10): 1383-1393.
    [22] WEI Q, TIAN Y, CASSIDY M J,et al. Behaviour of OMNI-Max anchors under chain loading[C]// Proceedings of the 3rd International Symposium Frontiers in Offshore Geotechnics (ISFOG).London, UK, 2015: 925-930.
    [23] LIU J, LU L H, HU Y X. Keying behavior of gravity installed plate anchor in clay[J]. Ocean Engineering,2016,114(1): 10-24.
    [24] MURFF J D. Limit analysis of multi-footing foundation systems[C]// Proceedings 8th International Conference on Computer Methods and Advances in Geomechanics,1994: 223-244.
    [25] TAN F S C. Centrifuge and theoretical modelling of conical footings on sand[D]. PhD Thesis.London: Cambridge University, 1990.
    [26] MARTIN C M, HOULSBY G T. Combined loading of spudcan foundations on clay: numerical modelling[J]. Géotechnique,2001,51(8): 687-699.
    [27] BRANSBY M F, RANDOLPH M F. Combined loading of skirted foundations[J]. Géotechnique,1998,48(5): 637-655.
    [28] ZHANG Y, BIENEN B, CASSIDY M J,et al. Undrained bearing capacity of deeply buried flat circular footings under general loading[J]. Journal of Geotechnical and Geoenvironmental Engineering,2012,138(3): 385-397.
    [29] WANG D, HU Y, RANDOLPH M F. Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2010,136(2): 355-365.
    [30] WU X, CHOW Y K, LEUNG C F. Behavior of drag anchor under uni-directional loading and combined loading[J]. Ocean Engineering,2017,129: 149-159.
    [31] MERIFIELD R S, SLOAN S W, YU H S. Stability of plate anchors in undrained clay[J]. Géotechnique,2001,51(2): 141-153.
    [32] WU X N, CHOW Y K , LEUNG C F. Prediction of drag anchor trajectory with both shallow and deep anchor behavior[C]//Proceedings of the Offshore Technology Conference Asia. Kuala Lumpur, Malaysia, 2016.
    [33] LIU H X, ZHANG W, ZHANG X, et al. Experimental investigation on the penetration mechanism and kinematic behavior of drag anchors[J]. Applied Ocean Research,2010,32(4): 434-442.
  • 加载中
计量
  • 文章访问数:  608
  • HTML全文浏览量:  77
  • PDF下载量:  612
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-08
  • 修回日期:  2018-02-08
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回