留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河渠水位线性变化条件下河渠-潜水-非稳定流模型及其解

吴丹 陶月赞 林飞

吴丹, 陶月赞, 林飞. 河渠水位线性变化条件下河渠-潜水-非稳定流模型及其解[J]. 应用数学和力学, 2018, 39(9): 1043-1050. doi: 10.21656/1000-0887.380250
引用本文: 吴丹, 陶月赞, 林飞. 河渠水位线性变化条件下河渠-潜水-非稳定流模型及其解[J]. 应用数学和力学, 2018, 39(9): 1043-1050. doi: 10.21656/1000-0887.380250
WU Dan, TAO Yuezan, LIN Fei. Solution of the Transient Stream-Groundwater Model With Linearly Varying Stream Water Levels[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1043-1050. doi: 10.21656/1000-0887.380250
Citation: WU Dan, TAO Yuezan, LIN Fei. Solution of the Transient Stream-Groundwater Model With Linearly Varying Stream Water Levels[J]. Applied Mathematics and Mechanics, 2018, 39(9): 1043-1050. doi: 10.21656/1000-0887.380250

河渠水位线性变化条件下河渠-潜水-非稳定流模型及其解

doi: 10.21656/1000-0887.380250
基金项目: 国家自然科学基金(51309071)
详细信息
    作者简介:

    吴丹(1986—),女,博士生(E-mail: wudanyt@163.com);陶月赞(1964—),男,教授,博士生导师(通讯作者. E-mail: taoyuezan@163.com).

  • 中图分类号: P641.132

Solution of the Transient Stream-Groundwater Model With Linearly Varying Stream Water Levels

Funds: The National Natural Science Foundation of China(51309071)
  • 摘要: 在河渠水位迅速变化后再缓慢变化的条件下,建立了河渠半无限潜水含水层中非稳定渗流模型.利用Boussinesq第一线性化方法及Laplace变换,并注意应用Laplace变换中的“积分性质”,给出形式相对简单、由常用函数表达的解,阐述特定解及其相应的物理意义.由解所揭示的潜水位变化规律表明,含水层任一点处潜水位变动速度的时间变化曲线形态是固定的,与河渠边界水位变动速率λ无关;潜水最大变速发生的时间,随λ呈非线性位移.依据潜水位变化规律,建立利用潜水位变动速度求含水层参数的方法,并用实例演示了拐点法求参数的过程.
  • [1] 张蔚榛. 地下水非稳定流计算和地下水资源评价[M]. 北京: 科学出版社,1983.(ZHANG Weizhen. Calculation of Unsteady Flow of Groundwater and Evaluation of Groundwater Resources [M]. Beijing: Science Press, 1983.(in Chinese))
    [2] BEAR J. 多孔介质流体力学[M]. 李竞生, 陈崇希, 译. 北京: 中国建筑工业出版社, 1983.(BEAR J. Dynamics of Fluids in Porous Media [M]. LI Jingsheng, CHEN Chongxi, transl. Beijing: China Architecture & Building Press, 1983.(Chinese version))
    [3] 束龙仓, 陶月赞. 地下水水文学[M]. 北京: 中国水利水电出版社, 2009.(SHU Longcang, TAO Yuezan. Groundwater Hydrology [M]. Beijing: China Water & Power Press, 2009.(in Chinese))
    [4] 陶月赞, 姚梅, 张炳峰. 时变垂向入渗影响下河渠-潜水非稳定渗流模型的解及应用[J]. 应用数学和力学, 2007,28(9): 1047-1053.(TAO Yuezan, YAO Mei, ZHANG Bingfeng. Solution and its application of transient stream/groundwater model subjected to time-dependent vertical seepage[J]. Applied Mathematics and Mechanics,2007,28(9): 1047-1053.(in Chinese))
    [5] MAHDAVI A. Transient-state analytical solution for groundwater recharge in anisotropic sloping aquifer[J]. Water Resources Management,2015,29(10): 3735-3748.
    [6] Bansal R K. Approximation of surface-groundwater interaction mediated by vertical stream bank in sloping terrains[J]. Journal of Ocean Engineering and Science,2017,2(1): 18-27.
    [7] HUANG F K, CHUANG M H, WANG G S, et al. Tide-induced groundwater level fluctuation in a U-shaped coastal aquifer[J]. Journal of Hydrology,2015,530(1): 291-305.
    [8] MUNUSAMY S B, DHAR A. Homotopy perturbation method-based analytical solution for tide-induced groundwater fluctuations[J]. Groundwater,2016,54(3): 440-447.
    [9] SU N H. The fractional Boussinesq equation of groundwater flow and its applications[J]. Journal of Hydrology,2017,547(2): 403-412.
    [10] DAVID P V, SAHUQUILLO A, ANDREU J, et al. A general methodology to simulate groundwater flow of unconfined aquifers with a reduced computational cost[J]. Journal of Hydrology,2007,38(1/2): 42-56.
    [11] KIM K Y, KIM T, KIM Y, et al. A semi-analytical solution for groundwater responses to stream-stage variations and tidal fluctuations in a coastal aquifer[J]. Hydrological Processes,2007,21(5): 665-674.
    [12] SERRANO S E, WORKMAN S R, SRIVASTAVA K, et al. Models of nonlinear stream aquifer transients[J]. Journal of Hydrology,2007,336(1): 199-205.
    [13] 陶月赞, 曹彭强, 席道瑛. 垂向入渗与河渠边界影响下潜水非稳定流参数的求解[J]. 水利学报, 2006,37(8): 913-917.(TAO Yuezan, CAO Pengqiang, XI Daoying. Parameter estimation for semi-infinite phreatic aquifer subjected to vertical seepage and bounded by channel[J]. Journal of Hydraulic Engineering,2006,37(8): 913-917.(in Chinese))
    [14] MIZUMURA K. Approximate solution of nonlinear Boussinesq equation[J]. Journal of Hydrologic Engineering,2009,14(10): 1156-1164.
    [15] YOUNGS E G, RUSHTON K R. Dupuit-forchheimer analyses of steady-state water-table heights due to accretion in drained lands overlying undulating sloping impermeable beds[J]. Journal of Irrigation and Drainage Engineering,2009,135(4): 467-473.
  • 加载中
计量
  • 文章访问数:  540
  • HTML全文浏览量:  54
  • PDF下载量:  865
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-06
  • 修回日期:  2017-11-21
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回