留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

页岩压裂水平井增产改造体积的动态演化模型

任岚 赵金洲 林然 周长林

任岚, 赵金洲, 林然, 周长林. 页岩压裂水平井增产改造体积的动态演化模型[J]. 应用数学和力学, 2018, 39(10): 1099-1114. doi: 10.21656/1000-0887.380268
引用本文: 任岚, 赵金洲, 林然, 周长林. 页岩压裂水平井增产改造体积的动态演化模型[J]. 应用数学和力学, 2018, 39(10): 1099-1114. doi: 10.21656/1000-0887.380268
REN Lan, ZHAO Jinzhou, LIN Ran, ZHOU Changlin. A Dynamic Evolution Model for the Stimulated Reservoir Volume of the Staged Fractured Horizontal Well in Shale Gas Reservoir[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1099-1114. doi: 10.21656/1000-0887.380268
Citation: REN Lan, ZHAO Jinzhou, LIN Ran, ZHOU Changlin. A Dynamic Evolution Model for the Stimulated Reservoir Volume of the Staged Fractured Horizontal Well in Shale Gas Reservoir[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1099-1114. doi: 10.21656/1000-0887.380268

页岩压裂水平井增产改造体积的动态演化模型

doi: 10.21656/1000-0887.380268
基金项目: 国家自然科学基金(重大项目)(51490653);国家自然科学基金青年科学基金(51404204)
详细信息
    作者简介:

    任岚(1979—),男,副教授,博士(E-mail: renlanswpu@163.com);林然(1989—),男,博士(通讯作者. E-mail: bob_home@126.com).

  • 中图分类号: TE312

A Dynamic Evolution Model for the Stimulated Reservoir Volume of the Staged Fractured Horizontal Well in Shale Gas Reservoir

Funds: The National Natural Science Foundation of China(Major Program)(51490653); The National Science Fund for Young Scholars of China(51404204)
  • 摘要: 页岩气藏开发实践表明,水平井分段压裂是实现页岩气藏经济有效开发的关键技术,其中增产改造体积(SRV)是控制页岩压后效果的核心参数,对SRV的准确计算和表征已成为页岩压裂研究领域的重点难点问题.基于目前SRV评价方法的局限性,考虑动态扩展裂缝与储层应力场和压力场的耦合作用,以及它们实时变化触发储层天然裂缝的破裂机制,建立了一种SRV动态演化计算模型,采用该模型可以计算和表征裂缝动态扩展形态、储层渗透率演化分布以及SRV的空间展布.由于模型与页岩压裂过程中储层SRV实际动态扩展物理机制较一致,采用该模型对SRV的评价计算更符合矿场实际.基于文中提出的计算方法,以威远页岩气开发示范区某压裂井段为例,验证了模型的可靠性,并计算分析了SRV随时间的动态演化过程及变化规律.该文研究对于提升页岩水平井分段分簇压裂SRV计算准确性,提高压裂优化设计以及压后效果评估具有重要的理论指导意义和矿场应用价值.
  • [1] CIPOLLA C L, WARPINSKI N R, MAYERHOFER M J, et al. The relationship between fracture complexity, reservoir properties, and fracture treatment design: SPE 115769[R]. 2008.
    [2] MAYERHOFER M J, LOLON E P, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations,2010,〖STHZ〗 25(1): 89-98.
    [3] ZHAO Y L, ZHANG L H, LUO J X, et al. Performance of fractured horizontal well with stimulated reservoir volume in unconventional gas reservoir[J]. Journal of Hydrology,2014,512(10): 447-456.
    [4] 刘尧文, 廖如刚, 张远, 等. 涪陵页岩气田井地联合微地震监测气藏实例及认识[J]. 天然气工业, 2016,36(10): 56-62.(LIU Yaowen, LIAO Rugang, ZHANG Yuan, et al. Application of surface-downhole combined microseismic monitoring technology in the fuling shale gas field and its enlightenment[J]. Natural Gas Industry,2016,36(10): 56-62.(in Chinese))
    [5] NANAYAKKARA A S, ROADARMEL W H, MARSIC S D. Characterizing the stimulated reservoir with a hydraulic deformation index using tiltmeter-based surface microdeformation: SPE 173381[R]. 2015.
    [6] PALISCH T, Al-TAILJI W, BARTEL L, et al. Recent advancements in far-field proppant detection: SPE 179161[R]. 2016.
    [7] SHAPIRO S A, DINSKE C. Fluid-induced seismicity: pressure diffusion and hydraulic fracturing[J]. Geophysical Prospecting,2009,57(2): 301-310.
    [8] YU G, AGUILERA R. 3D analytical modeling of hydraulic fracturing stimulated reservoir volume: SPE 153486[R]. 2012.
    [9] MAULIANDA B T, HARELAND G, CHEN S. Geomechanical consideration in stimulated reservoir volume dimension models prediction during multi-stage hydraulic fractures in horizontal wells-glauconite tight formation in hoadley field[C]// The 〖STBX〗48th US Rock Mechanics/Geomechanics Symposium.Minneapolis, Minnesota, 2014.
    [10] 任岚, 林然, 赵金洲, 等. 基于最优SRV的页岩气水平井压裂簇间距优化设计[J]. 天然气工业, 2017,37(4): 69-79.(REN Lan, LIN Ran, ZHAO Jinzhou, et al. Cluster spacing optimal design for staged fracturing in horizontal shale gas wells based on optimal SRV[J]. Natural Gas Industry,2017,〖STHZ〗 37(4): 69-79.(in Chinese))
    [11] WU K, OLSON J E. Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells[J].SPE Journal,2015,20(2): 337-346.
    [12] WENG X, KRESSE O, COHEN C E, et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation[J]. SPE Production & Operations,2011,26(4): 368-380.
    [13] MEYER B R, BAZAN L W. A discrete fracture network model for hydraulically induced fractures-theory, parametric and case studies: SPE 140514[R]. 2011.
    [14] WANG Y, LI X, ZHANG B, et al. Optimization of multiple hydraulically fractured factors to maximize the stimulated reservoir volume in silty laminated shale formation, Southeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering,2016,145: 370-381.
    [15] VALK P, ECONOMIDES M J. Hydraulic Fracture Mechanics [M]. New York: Wiley,1995.
    [16] ERDOGAN F, SIH G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering,1963,85(4): 519-525.
    [17] OLSON J E. Fracture aperture, length and pattern geometry development under biaxial loading: a numerical study with applications to natural, cross-jointed systems[J]. Geological Society London Special Publications,2007,289(1): 123-142.
    [18] ELBEL J L, PIGGOTT A R, MACK M G. Numerical modeling of multilayer fracture treatments: SPE 23982[R]. 1992.
    [19] CROUCH S. Solution of plane elasticity problems by the displacement discontinuity method I: infinite body solution[J]. International Journal for Numerical Methods in Engineering,1976,10(2): 301-343.
    [20] OLSON J E, WU K. Sequential vs. simultaneous multizone fracturing in horizontal wells: insights from a non-planar, multifrac numerical model: SPE 152602[R]. 2012.
    [21] 张烈辉. 油气藏数值模拟基本原理[M]. 北京: 石油工业出版社, 2014.(ZHANG Liehui. Introduction for Numerical Simulation of Oil and Gas Reservoir [M]. Beijing: Petroleum Industry Press, 2014.(in Chinese))
    [22] WENG X, SESETTY V, KRESSE O. Investigation ofshear-induced permeability in unconventional reservoirs[C]// The 〖STBX〗49th US Rock Mechanics/Geomechanics Symposium.San Francisco, California, USA, 2015.
    [23] HOSSAIN M M, RAHMAN M K, RAHMAN S S. A shear dilation stimulation model for production enhancement from naturally fractured reservoirs[J]. SPE Journal,2002,7(2): 183-195.
    [24] GUO J, LIU Y. A comprehensive model for simulating fracturing fluid leakoff in natural fractures[J]. Journal of Natural Gas Science and Engineering,2014,21: 977-985.
    [25] WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology,1987,39(2): 209-220.
    [26] LASS H, WALKER M. Vector and Tensor Analysis [M]. McGraw-Hill, 1950.
    [27] 吕同富, 康兆敏, 方秀男. 数值计算方法[M]. 北京: 清华大学出版社, 2008.(L Tongfu, KANG Zhaomin, FANG Xiunan. Numerical Computation Method [M]. Beijing: Tsinghua University Press, 2008.(in Chinese))
    [28] ITO Y, OBARA K. Very low frequency earthquakes within accretionary prisms are very low stress-drop earthquakes[J]. Geophysical Research Letters,2006,33(9): 72-88.
  • 加载中
计量
  • 文章访问数:  669
  • HTML全文浏览量:  31
  • PDF下载量:  936
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-30
  • 修回日期:  2018-04-24
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回