留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

八次对称二维准晶Ⅱ型单边裂纹的动力学问题

马晴 王桂霞 李联和

马晴, 王桂霞, 李联和. 八次对称二维准晶Ⅱ型单边裂纹的动力学问题[J]. 应用数学和力学, 2018, 39(10): 1180-1188. doi: 10.21656/1000-0887.380272
引用本文: 马晴, 王桂霞, 李联和. 八次对称二维准晶Ⅱ型单边裂纹的动力学问题[J]. 应用数学和力学, 2018, 39(10): 1180-1188. doi: 10.21656/1000-0887.380272
MA Qing, WANG Guixia, LI Lianhe. Dynamic Problems of Mode Ⅱ Cracks in 2D Octagonal Quasicrystals[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1180-1188. doi: 10.21656/1000-0887.380272
Citation: MA Qing, WANG Guixia, LI Lianhe. Dynamic Problems of Mode Ⅱ Cracks in 2D Octagonal Quasicrystals[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1180-1188. doi: 10.21656/1000-0887.380272

八次对称二维准晶Ⅱ型单边裂纹的动力学问题

doi: 10.21656/1000-0887.380272
基金项目: 国家重点研发计划(2017YFC1405600);国家自然科学基金(11462020;11361039);内蒙古自然科学基金(2017MS0104;2017MS0124;2017MS0125);内蒙古自治区高等学校科学研究项目(NJZY17045)
详细信息
    作者简介:

    马晴(1989—),女,硕士生(E-mail: 940972965@qq.com);王桂霞(1968—),女,教授,博士(通讯作者. E-mail: nsdwgx@126.com).

  • 中图分类号: O346.1; O242.1; O343

Dynamic Problems of Mode Ⅱ Cracks in 2D Octagonal Quasicrystals

Funds: The National Key R&D Program of China(2017YFC1405600);The National Natural Science Foundation of China(11462020;11361039)
  • 摘要: 依据准晶弹性流体动力学模型,采用有限差分方法,探讨了八次对称二维准晶Ⅱ型单边裂纹的动力学问题.首先分析了相同载荷的不同加载时间、不同的加载位置以及不同的试样尺寸对裂纹尖端处声子场应力强度因子的影响;其次分析了不同的声子场相位子场耦合弹性常数对相位子场位移分量的影响;最后分析了板端加载与裂纹面加载对动态应力强度因子的影响.计算结果表明:大小相同的脉冲载荷,加载的时间越长,无量纲化的应力强度因子越大,其曲线逐渐趋近于阶跃载荷下的曲线;试样宽度越宽,应力强度因子由零到非零需要的时间越长,无量纲化的应力强度因子值越小,说明应力强度因子与试样的尺寸有关系;声子场相位子场耦合弹性常数越大相位子场的位移分量也越大,这是因为相位子场的边界没有载荷,相位子场位移的作用力来自声子场,声子场起主导作用;而裂纹面加载和板端加载是不等价的,前者的无量纲化应力强度因子的变化幅度比后者大,这与板端加载更容易导致材料断裂的事实相一致.
  • [1] SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters,1984,53(20): 1951-1953.
    [2] 李联和, 刘官厅. 准晶断裂力学的复变函数方法[M]. 北京: 科学出版社, 2013.(LI Lianhe, LIU Guanting. Quasicrystal Fracture Mechanics of Complex Variable Function Method [M]. Beijing: Science Press, 2013.(in Chinese))
    [3] YANG W, FEUERBACHER M, TAMURA N, et al. Atomic model of dislocations in Al-Pd-Mn icosahedral quasicrytals[J]. Philosophical Magazine A, 1998,77(6): 1481-1497.
    [4] WANG X. Green functions for a decagonal quasicrystalline material with a parabolice boundary[J]. Acta Mechanica Solida Sinica,2005,18(1): 57-62.
    [5] WANG X, ZHANG J Q. A steady line heat source in a decagonal quasicrystalline half-space[J]. Mechanics Research Communications,2005,32(4): 420-428.
    [6] CHEN W Q, MA Y L, DING H J. On three-dimensional elastic problems of one-dimensional hexagonal quasicrystal bodies[J]. Mechanics Research Communications, 2004,31(6): 633-641.
    [7] GAO Y, XU S P, ZHAO B S. Boundary conditions for plate bending in one-dimensional hexagonal quasicrystals[J]. Journal of Elasticity,2007,86(3): 221-233.
    [8] 郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解[J]. 应用数学学报, 2007,30(6): 1066-1075.(GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicryst about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica,2007,30(6): 1066-1075.(in Chinese))
    [9] LI X Y. Elastic field in an infinite medium of one-dimensional hexagonal quasicrystal with a planar crack[J]. International Journal of Solids & Structures,2014,51(6): 1442-1455.
    [10] BAK P. Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn-Al alloys[J]. Physical Review Letters,1985,54(14): 1517-1519.
    [11] BAK P. Symmetry, stability, and elastic properties of icosahedral incommensurate crystals[J]. Physical Review B: Condensed Matter,1985,32(9): 5764-5772.
    [12] LUBENSKY T C, RAMASWAMY S, TONER J. Hydrodynamics of icosahedral quasicrystals[J]. Physical Review B: Condensed Matter,1985,32(11): 7444-7452.
    [13] FAN T Y, WANG X F, LI W, et al. Elasto-hydrodynamics of quasicrystals[J]. Philosophical Magazine,2009,89(6): 501-512.
    [14] LI X F. Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation[J]. Philosophical Magazine,2013,93(13): 1500-1519.
    [15] 张超华, 李联和, 云国宏. 十次对称二维准晶材料的位错动力学问题[J]. 固体力学学报, 2017,38(2): 165-169.(ZHANG Chaohua, LI Lianhe,YUN Guohong. Study on moving dislocations in decagonal quasicrystals[J]. Chinese Journal of Solid Mechanics, 2017,38(2): 165-169.(in Chinese))
    [16] ZHU A Y, FAN T Y. Dynamic crack propagation in decagonal Al-Ni-Co quasicrystal[J]. Journal of Physics Condensed Matter,2008,20(20): 295217.
    [17] WANG X F, FAN T Y, ZHU A Y. Dynamic behaviour of the icosahedral Al-Pd-Mn quasicarystal with a Griffith crack[J]. Chinese Physics B,2009,18(2): 709-714.
    [18] YIN Z H, FAN T Y, ZHU A Y. Dynanmic crack propagation in five-fold symmetry quasicrystals[J]. Modern Physics Letters B,2009,23(12): 1509-1518.
    [19] 尹姝媛, 周旺民, 范天佑. 八次对称准晶中的Ⅱ型裂纹[J]. 应用数学和力学, 2002,23(4): 376-380.(YIN Shuyuan, ZHOU Wangmin, FAN Tianyou. A model Ⅱ crack in a two-dimensional octagonal quasicrystals[J]. Applied Mathematics and Mechanics,2002,23(4): 376-380.(in Chinese))
    [20] ZHU A Y, FAN T Y. Elastic analysis of a mode Ⅱ crack in an icosahedral quasicrystal[J]. Chinese Physics,2007,16(4): 1111-1118.
    [21] 郭玉翠, 范天佑. 平面十次对称准晶中Ⅱ型中Griffith裂纹的求解[J]. 应用数学和力学, 2001,22(11): 1181-1186.(GUO Yucui, FAN Tianyou. A model-Ⅱ Griffith crack in decagonal quasicrytals[J]. Applied Mathematics and Mechanics,2001,22(11): 1181-1186.(in Chinese))
    [22] 郝莉. Ⅱ型动态裂纹的动态应力强度因子的数值分析[J]. 北京建筑工程学院学报, 1998,14(3): 72-84.(HAO Li. The numerical analysis about dynamic stress intensity factor of Ⅱ dynamic crack[J]. Journal of Beijing Institute of Civil Engineering and Architecture,1989,14(13): 72-84.(in Chinese))
  • 加载中
计量
  • 文章访问数:  561
  • HTML全文浏览量:  59
  • PDF下载量:  607
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-27
  • 修回日期:  2018-02-26
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回