留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

径向低渗非Darcy渗流动边界半解析模型

侯绍继 朱卫平 刘曰武 甄怀宾 高大鹏 李奇

侯绍继, 朱卫平, 刘曰武, 甄怀宾, 高大鹏, 李奇. 径向低渗非Darcy渗流动边界半解析模型[J]. 应用数学和力学, 2018, 39(10): 1115-1127. doi: 10.21656/1000-0887.380330
引用本文: 侯绍继, 朱卫平, 刘曰武, 甄怀宾, 高大鹏, 李奇. 径向低渗非Darcy渗流动边界半解析模型[J]. 应用数学和力学, 2018, 39(10): 1115-1127. doi: 10.21656/1000-0887.380330
HOU Shaoji, ZHU Weiping, LIU Yuewu, ZHEN Huaibin, GAO Dapeng, LI Qi. A Semi-Analytical Model for Moving Boundary of Radial Non-Darcy Flow in Low Permeability Reservoir[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1115-1127. doi: 10.21656/1000-0887.380330
Citation: HOU Shaoji, ZHU Weiping, LIU Yuewu, ZHEN Huaibin, GAO Dapeng, LI Qi. A Semi-Analytical Model for Moving Boundary of Radial Non-Darcy Flow in Low Permeability Reservoir[J]. Applied Mathematics and Mechanics, 2018, 39(10): 1115-1127. doi: 10.21656/1000-0887.380330

径向低渗非Darcy渗流动边界半解析模型

doi: 10.21656/1000-0887.380330
基金项目: 国家科技重大专项(2011ZX05038-003)
详细信息
    作者简介:

    侯绍继(1992—),男,硕士(E-mail: houshaoji@imech.ac.cn);刘曰武(1965—),男,研究员,博士(通讯作者. E-mail: liuyuewulxs@126.com).

  • 中图分类号: TE312

A Semi-Analytical Model for Moving Boundary of Radial Non-Darcy Flow in Low Permeability Reservoir

Funds: The National Science and Technology Major Project of China(2011ZX05038-003)
  • 摘要: 低渗油藏渗流过程中普遍存在启动压力梯度(TPG).考虑低渗渗流特征,建立了平面径向低渗非Darcy渗流动边界数学模型,给出了计算动边界移动速度的公式,通过Laplace变换结合无穷级数方法求得了模型的半解析解,并进行了Stehfest数值反演.详细讨论与分析了动边界问题特性、动边界变化和传播情况,解释了启动压力梯度导致动边界不断向外扩展的现象.计算了启动压力梯度对井底压力、压力导数的影响,并给出不同条件下的地层压力分布曲线和GringartenBourdet图版,同时给出了实例分析.研究发现:低渗渗流模型与常规渗流模型有着显著不同,低渗非Darcy渗流压力降是随时间扩展的,在动边界外的地层压力降为零,压力分布曲线呈现紧支性.针对具有动边界的低渗透问题,需充分考虑启动压力梯度与动边界的影响,该模型为低渗油藏渗流机理和开采动态、解释与数值模拟提供了一定的理论基础.
  • [1] 黄延章. 低渗透油层非线性渗流特征[J]. 特种油气藏, 1997,4(1): 9-14.(HUANG Yanzhang. Nonlinear percolation feature in low permeability reservoir[J]. Special Oil and Gas Reservoirs,1997,4(1): 9-14.(in Chinese))
    [2] PRADA A, CIVAN F. Modification of Darcy’s law for the threshold pressure gradient[J]. Journal of Petroleum Science and Engineering,1999,22(4): 237-240.
    [3] CAI J C. A fractal approach to low velocity non-Darcy flow in a low permeability porous medium[J]. Chinese Physics B,2014,23(4): 385-389.
    [4] ZHU W, SONG H, HUANG X, et al. Pressure characteristics and effective deployment in a water-bearing tight gas reservoir with low-velocity non-Darcy flow[J]. Energy & Fuels,2011,25(3): 1111-1117.
    [5] 姚同玉, 黄延章, 李继山. 孔隙介质中稠油流体非线性渗流方程[J]. 力学学报, 2012,44(1): 106-110.(YAO Tongyu, HUANG Yanzhang, LI Jishan. Nonlinear flow equations for heavy oil in porous media[J]. Chinese Journal of Theoretical and Applied Mechanics,2012,44(1): 106-110.(in Chinese))
    [6] 孔详言. 高等渗流力学[M]. 合肥: 中国科学技术大学出版社, 2010.(KONG Xiangyan. Advanced Mechanics of Fluids in Porous Media [M]. Hefei: China University of Science and Technology Press, 2010.(in Chinese))
    [7] PASCAL H. Non steady flow through porous media in the presence of a threshold gradient[J]. Acta Mechanica,1981,39(3/4): 207-224.
    [8] WU Y S, PRUESS K, WITHERSPOON P A. Flow and displacement of Binghamnon-Newtonian fluids in porous media[J]. SPE Reservoir Engineering,1993,7(3): 369-376.
    [9] 祝春生, 程林松, 张淑娟. 低渗透油藏不稳定渗流的近似解法[J]. 西南石油大学学报(自然科学版), 2008,30(4): 69-72.(ZHU Chunsheng, CHEN Linsong, ZHANG Shujuan. Approximate solution for non-steady flow in low-permeability reservoir[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2008,30(4): 69-72.(in Chinese))
    [10] 程时清, 张盛宗, 黄延章, 等. 低速非达西渗流动边界问题的积分解[J]. 力学与实践, 2002,24(3): 15-17.(CHEN Shiqing, ZHUANG Shenzong, HUANG Yanzhang, et al. An integal solution of free-boundary problem of non-Darcy flow behavior[J]. Mechanics in Engineering,2002,24(3): 15-17.(in Chinese))
    [11] SHAWKET G, JING L. Pressure behavior of vertical wells in low permeability reservoirs with threshold pressure gradient[J]. Special Topics and Reviews in Porous Media: An International Journal,2011,2(3): 157-169.
    [12] JING L. Pressure behavior of uniform-flux hydraulically fractured wells in low-permeability reservoirs with threshold pressure gradient[J]. Special Topics and Reviews in Porous Media: An International Journal,2012,3(4): 307-320.
    [13] GUO Y C, ZENG Q H, WANG Z X. Numerical simulation of low permeability flow with moving-boundary using meshless methods[J]. Engineering Mechanics,2006,23(11): 188-192.
    [14] 李凡华, 刘慈群. 含启动压力梯度的不定常渗流的压力动态分析[J]. 油气井测试, 1997,6(1): 1-4.(LI Fanhua, LIU Ciqun. Pressure transient analysis for unsteady porous flow with start-up pressure derivative[J]. Well Testing,1997,6(1): 1-4.(in Chinese))
    [15] SONG F Q, LIU C Q, LI F H. Transient pressure of percolation through one dimension porous media with threshold pressure gradient[J]. Applied Mathematics and Mechanics,1999,20(1): 27-35.
    [16] LIU W C, YAO J, CHEN Z X. Analytical solution of a double moving boundary problem for nonlinear flows in one-dimensional semi-infinite long porous media with low permeability[J]. Acta Mechanica Sinica,2014,30(1): 50-58.
    [17] 冯文光, 葛家理. 单一介质、双重介质非达西低速渗流的压力曲线动态特征[J]. 石油勘探与开发, 1986,13(5): 56-61.(FENG Wenguang, GE Jiali. The performance of the pressure curves with the non-Darcy low speed fluids flowing in the single and double porous media[J]. Petroleum Exploration and Development,1986,13(5): 56-61.(in Chinese))
    [18] 冯文光. 天然气非达西低速不稳定渗流[J]. 天然气工业, 1986,6(3): 41-48.(FENG Wenguang. Non-Darcy low-velocity unsteady-state seepage flow of natural gas[J]. Natural Gas Industry,1986,6(3): 41-48.(in Chinese))
    [19] 程时清, 李功权, 卢涛, 等. 双重介质油气藏低速非达西渗流试井有效井径数学模型及典型曲线[J]. 天然气工业, 1997,17(2): 35-37.(CHEN Shiqing, LI Gongquan, LU Tao, et al. Mathematical model and typical curve for calculating effective hole diameter in the low velocity non-Darcy flow testing of dual-media reservoirs[J]. Natural Gas Industry,1997,17(2): 35-37.(in Chinese))
    [20] 程林松, 任胜利, 廉培庆. 动边界双重介质油藏低速非达西渗流试井模型[J]. 计算力学学报,2011,28(6): 879-883.(CHENG Linsong, REN Shengli, LIAN Peiqing. Well test analysis on low velocity and non-Darcy flow in dual-porosity reservoir with dynamic boundary[J]. Chinese Journal of Computational Mechanics,2011,28(6): 879-883.(in Chinese))
    [21] 冯曦, 钟孚勋. 低渗透致密储层气井试井模型研究[J]. 天然气工业, 1998,18(1): 56-59.(FENG Xi, ZHONG Fuxun. Well test model study of the gas wells tight reservoir with low permeability[J]. Natural Gas Industry,1998,18(1): 56-59.(in Chinese))
    [22] 刘启国, 杨旭明, 魏红梅, 等. 动边界影响的低渗双重介质油气藏试井解释模型[J]. 西南石油学院学报, 2004,26(5): 30-33.(LIU Qiguo, YANG Xuming, WEI Hongmei, et al. Study of well-test model of low permeability dual-pore media with flowing boundary in oil and gas[J]. Journal of Southwest Petroleum Institute,2004,26(5): 30-33.(in Chinese))
    [23] LIU W C, YAO J, WANG Y Y. Exact analytical solutions of moving boundary problems of one-dimensional flow in semi-infinite long porous media with threshold pressure gradient[J]. International Journal of Heat and Mass Transfer,2012,55(21/22): 6017-6022.
    [24] 郭永存, 曾清红, 王仲勋. 动边界低渗透油藏的无网格方法数值模拟[J]. 工程力学, 2006,23(11): 188-192.(GUO Yongcun, ZENG Qinghong, WANG Zhongxun. Numerical simulation of low permeability flow with moving-boundary using meshless methods[J]. Engineering Mechanics,2006,23(11): 188-192.(in Chinese))
    [25] 侯英敏, 同登科. 动边界低渗透双重介质分形油藏中非牛顿幂律流体非稳态渗流[J]. 工程力学, 2009,26(8): 245-250.(HOU Yingming, TONG Dengke. Non steady flow of non-Newtonian power-law fluids of low permeability with moving-boundary in double porous media and fractal reservoir[J]. Engineering Mechanics,2009,26(8): 245-250.(in Chinese))
    [26] 姚军, 刘文超. 低渗透油藏非达西渗流动边界模型求解新方法[J]. 力学季刊, 2012,33(4): 597-601.(YAO Jun, LIU Wenchao. New method for solution of the model of non-Darcy seepage flow in low-permeability reservoir with moving boundary[J]. Chinese Quarterly of Mechanics,2012,33(4): 597-601.(in Chinese))
    [27] 冯曦, 钟孚勋. 低速非达西渗流试井模型的一种新的求解方法[J]. 油气井测试, 1997,6(3): 16-21.(FENG Xi, ZHONG Fuxun. A new solution for the well testing model of low velocity non-Darcy percolation[J]. Well Testing,1997,6(3): 16-21.(in Chinese))
    [28] 李顺初, 任丽, 郑鹏社, 等. 基于应力敏感的天然裂缝性页岩气藏双孔模型解的结构[J]. 应用数学和力学, 2017,38(2): 233-242.(LI Shunchu, REN Li, ZHENG Pengshe, et al. Similar structure of the solution to the dual-porosity model for naturally fractured shale gas reservoirs based on stress sensitivity[J]. Applied Mathematics and Mechanics,2017,38(2): 233-242.(in Chinese))
    [29] STEHFEST H. Numerical inversion of Laplace transforms[J]. Communications of the ACM,1970,13(1): 47-49.
    [30] JACQUOT R G, STEADMAN J W, RHODINE C N. The Gaver-Stehfest algorithm for approximate inversion of Laplace transforms[J]. IEEE Circuits & Systems Magazine,1983,5(1): 4-8.
    [31] CRUMP K S. Numericalinversion of Laplace transforms using a Fourier series approximation[J]. Journal of the ACM,1976,23(1): 89-96.
    [32] VALK P P, VAJDA S. Inversion of noise-free Laplace transforms: towards a standardized set of test problems[J]. Inverse Problems in Engineering,2002,10(5): 467-483.
    [33] BRANCIK L. Erroranalysis at numerical inversion of multidimensional Laplace transforms based on complex Fourier series approximation[J]. IEICE Transactions on Fundamentals of Electronics Communications & Computer Sciences,2011,94A(3): 999-1001.
    [34] HONIG G, HIRDES U. A method for the numerical inversion of Laplace transforms[J]. Journal of Computational & Applied Mathematics,1984,10(1): 113-132.
  • 加载中
计量
  • 文章访问数:  694
  • HTML全文浏览量:  68
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-19
  • 修回日期:  2018-04-19
  • 刊出日期:  2018-10-01

目录

    /

    返回文章
    返回