留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维汽车底盘后纵臂CAE设计的优化算法

朱迪 姚远 彭雄奇

朱迪, 姚远, 彭雄奇. 碳纤维汽车底盘后纵臂CAE设计的优化算法[J]. 应用数学和力学, 2018, 39(8): 925-934. doi: 10.21656/1000-0887.390001
引用本文: 朱迪, 姚远, 彭雄奇. 碳纤维汽车底盘后纵臂CAE设计的优化算法[J]. 应用数学和力学, 2018, 39(8): 925-934. doi: 10.21656/1000-0887.390001
ZHU Di, YAO Yuan, PENG Xiongqi. An Optimization Algorithm for CAE Design of Carbon Fiber Reinforced Composite Chassis Longitudinal Arms[J]. Applied Mathematics and Mechanics, 2018, 39(8): 925-934. doi: 10.21656/1000-0887.390001
Citation: ZHU Di, YAO Yuan, PENG Xiongqi. An Optimization Algorithm for CAE Design of Carbon Fiber Reinforced Composite Chassis Longitudinal Arms[J]. Applied Mathematics and Mechanics, 2018, 39(8): 925-934. doi: 10.21656/1000-0887.390001

碳纤维汽车底盘后纵臂CAE设计的优化算法

doi: 10.21656/1000-0887.390001
详细信息
    作者简介:

    朱迪(1993—),女,硕士生(E-mail: iriszhudi@163.com);彭雄奇(1970—),男,教授,博士生导师(通讯作者. E-mail: xqpeng@sjtu.edu.cn).

  • 中图分类号: TB324

An Optimization Algorithm for CAE Design of Carbon Fiber Reinforced Composite Chassis Longitudinal Arms

  • 摘要: 后纵臂是汽车底盘的主要结构之一.采用碳纤维复合材料设计后纵臂可以有效减重.然而复合材料的应用也给其优化设计带来了很大的挑战,如复杂的多工况和大量的设计变量.使用Python语言对ABAQUS二次开发,对于各角度铺层占比进行全局遍历得出其有效解与最优解.为了解决多工况下运算时间长的问题,将基于树的算法模型,如XGBoost、DART、随机森林,引入到各铺层角度占比设计的计算中.同时考虑到计算量和计算准确率两者的关系,在新工况计算量在0条和10条的情况下,Tsai-Wu因子的准确率分别可以达到96.3%和98.3%(与失效值1相比).在将已有工况数据量减少一半的情况下,如果提高新工况计算量到40条,准确率可以达到95.0%.为多工况下碳纤维复合材料零件轻量化计算提供了有益的参考.
  • [1] 杨小平, 隋刚. 碳纤维复合材料在新能源产业中的应用进展[J]. 新材料产业, 2012(2): 20-24.(YANG Xiaoping, SUI Gang. Application of carbon fiber composite materials in new energy industry[J]. Advanced Materials Industry,2012(2): 20-24.(in Chinese))
    [2] 冯美斌. 汽车轻量化技术中新材料的发展及应用[J]. 汽车工程, 2006,28(3): 213-220.(FENG Meibin. Development and application of new materials in automotive lightweighting technologies[J]. Automotive Engineering,2006,28(3): 213-220.(in Chinese))
    [3] PARPINELLI R S, LOPES H S, FREITAS A A. Data mining with an ant colony optimization algorithm[J]. IEEE Transactions on Evolutionary Computation,2 002,6(4): 321-332.
    [4] 肖书敏, 闫云聚, 姜波澜. 基于小波神经网络方法的桥梁结构损伤识别研究[J]. 应用数学和力学, 2016,37(2): 149-159.(XIAO Shumin, YAN Yunju, JIANG Bolan. Damage identification for bridge structures based on the wavelet neural network method[J]. Applied Mathematics and Mechanics,2016,37(2): 149-159.(in Chinese))
    [5] DILEEP P N, KUMAR RR, RAO G V. A neural-genetic algorithm approach for evaluation of notched strength of laminate[J]. Journal of the Institution of Engineers(India),2 002.
    [6] 刘振国, 胡杰, 胡龙. 基于遗传算法的层合板分级铺层全局优化[J]. 北京航空航天大学学报, 2013,39(4): 478-483.(LIU Zhenguo, HU Jie, HU Long. Global optimization of classified composite laminated structures based on genetic algorithms[J]. Journal of Beijing University of Aeronautics and Astronautics,2013,39(4): 478-483.(in Chinese))
    [7] RAO A R M, LAKSHMI K. Optimal design of stiffened laminate composite cylinder using a hybrid SFL algorithm[J].Journal of Composite Materials,2012,46(24): 3031-3055.
    [8] SALAMAT A R, RAIESINEZHAD M. Optimum design ofantisymmetric cross-ply and angle-ply laminate with bees algorithm[Z]. 2012.
    [9] YAO Y, WANG T, GONG Y, et al. Development of a carbon fiber reinforced composite chassis longitudinal arm[J]. Science of Advanced Materials,2016,8(11): 2133-2141.
    [10] 龚友坤, 王韬, 姚远, 等. 汽车底盘碳纤维后纵臂成形实验与分析[J]. 汽车工程, 2016,38(2): 248-251.(GONG Youkun, WANG Tao, YAO Yuan, et al. Forming experiment and analysis of vehicle rear longitudinal arm of carbon fiber reinforced composite[J]. Automotive Engineering,2016,38(2): 248-251.(in Chinese))
    [11] ROKACH L, MAIMON O. Data Mining With Decision Trees: Theory and Applications [M]. Singapore: World Scientific Publishing Company, 2008.
    [12] KIM Y, PERRIG A, TSUDIK G. Tree-based group key agreement[J]. Acm Transactions on Information & System Security,2004,7(1): 60-96.
    [13] LIANG X, QU F, YANG Y, et al. An improved ID3 decision tree algorithm based on attribute weighted[C]// International Conference on Civil, Materials and Environmental Sciences.Paris, France, 2015.
    [14] LU G, KRISHNAMACHARI B, RAGHAVENDRA C S. An adaptive energy-efficient and low-latency MAC for tree-based data gathering in sensor networks: research articles[J]. Wireless Communications & Mobile Computing,2007,7(7): 863-875.
    [15] QUINLAN J R. Induction on decision tree[J]. Machine Learning,1986,1(1): 81-106.
    [16] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// ACM Sigkdd International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA, 2016: 785-794.
    [17] VINAYAK R K, GILAD-BACHRACH R. DART: Dropouts meet multiple additive regression trees[C]// Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics. Vol38. San Diego, California, USA, 2015: 489-497.
    [18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks fromoverfitting[J]. Journal of Machine Learning Research,2014,15(1): 1929-1958.
    [19] GUYON I, ELISSEEFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research,2 003,3(6): 1157-1182.
    [20] ERNST D, GEURTS P, WEHENKEL L. Tree-based batch mode reinforcement learning[J]. Journal of Machine Learning Research,2005,6(2): 503-556.
    [21] 史忠植. 知识发现[M]. 北京: 清华大学出版社, 2011.(SHI Zhongzhi. Knowledge Discovery [M]. Beijing: Tsinghua University Press, 2011.(in Chinese))
  • 加载中
计量
  • 文章访问数:  770
  • HTML全文浏览量:  47
  • PDF下载量:  685
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-02
  • 修回日期:  2018-01-14
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回