留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进Chebyshev级数的层合结构-振动分析新理论

叶天贵 靳国永 刘志刚

叶天贵, 靳国永, 刘志刚. 基于改进Chebyshev级数的层合结构-振动分析新理论[J]. 应用数学和力学, 2019, 40(1): 58-74. doi: 10.21656/1000-0887.390098
引用本文: 叶天贵, 靳国永, 刘志刚. 基于改进Chebyshev级数的层合结构-振动分析新理论[J]. 应用数学和力学, 2019, 40(1): 58-74. doi: 10.21656/1000-0887.390098
YE Tiangui, JIN Guoyong, LIU Zhigang. A New Layerwise Theory for Vibration Analysis of Laminated Structures Based on Modified Chebyshev Polynomials[J]. Applied Mathematics and Mechanics, 2019, 40(1): 58-74. doi: 10.21656/1000-0887.390098
Citation: YE Tiangui, JIN Guoyong, LIU Zhigang. A New Layerwise Theory for Vibration Analysis of Laminated Structures Based on Modified Chebyshev Polynomials[J]. Applied Mathematics and Mechanics, 2019, 40(1): 58-74. doi: 10.21656/1000-0887.390098

基于改进Chebyshev级数的层合结构-振动分析新理论

doi: 10.21656/1000-0887.390098
基金项目: 国家自然科学基金(51709066;51775125);中国博士后科学基金(2017M621252);中央高校基本科研业务费(HEUCF180305)
详细信息
    作者简介:

    叶天贵(1989—),男,副教授,博士(E-mail: yetiangui@hrbeu.edu.cn);靳国永(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: guoyongjin@hrbeu.edu.cn).

  • 中图分类号: O327

A New Layerwise Theory for Vibration Analysis of Laminated Structures Based on Modified Chebyshev Polynomials

Funds: The National Natural Science Foundation of China(51709066;51775125);China Postdoctoral Science Foundation(2017M621252)
  • 摘要: 提出了一种基于改进Chebyshev级数的层合结构高阶分层建模理论.该理论位移场由线性位移场和高阶位移场组成,线性位移场控制位移场的总体分布趋势,高阶位移场进行局部修正.高阶位移场由具有统一表达式的改进Chebyshev级数表示,通过改变高阶截断阶数可实现高阶位移场快速配置,能够满足不同建模精度需求.采用该高阶分层理论和广义谱方法推导了层合结构的自由振动特征方程,研究了一般边界条件下层合梁、板、壳的自由振动特性,并将计算结果与其他文献数据对比.结果表明:基于改进Chebyshev级数的层合结构高阶分层理论具有较高的建模精度和计算效率.
  • [1] 刘人怀, 薛江红. 复合材料层合板壳非线性力学的研究进展[J]. 力学学报, 2017,49(3): 487-506.(LIU Renhuai, XUE Jianghong. Development of nonlinear mechanics for laminated composite plates and shells[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(3): 487-506.(in Chinese))
    [2] 缪旭弘, 郭凤水, 贾地. 国外潜艇吸隔声材料研究现状及关键技术分析[C]//船舶水下噪声学术讨论会. 西安, 2007.(MIU Xuhong, GUO Fengshui, JIA Di. Research on development and key technical of submarine sound insulation materials in foreign countries[C]// Academic Seminar on Underwater Noise of Ships . Xi’an, 2017.(in Chinese))
    [3] QATU M S. Vibration of Laminated Shells and Plates [M]. San Diego: Elsevier, 2004.
    [4] REDDY J N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis [M]. Florida: CRC Press, 2003.
    [5] WU Z, MA R, CHEN W. A refined three-node triangular element based on the HW variational theorem for multilayered composite plates[J]. Composite Structures,2017,161: 132-144.
    [6] WU Z, CHEN W. A global higher-orderzig-zag model in terms of the HW variational theorem for multilayered composite beams[J]. Composite Structures,2016,158: 128-136.
    [7] LIU B, XING Y F, QATU M S, et al. Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells[J]. Composite Structures,2012,94(2): 484-493.
    [8] XING Y, LIU B, XU T. Exact solutions for free vibration of circular cylindrical shells with classical boundary conditions[J]. International Journal of Mechanical Sciences,2013,75(4): 178-188.
    [9] JIN G, YE T, CHEN Y, et al. An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions[J].Composite Structures,2013,106: 114-127.
    [10] JIN G, YE T, MA X, et al. A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions[J]. International Journal of Mechanical Sciences,2013,75(10): 357-376.
    [11] YE T, JIN G, SHI S, et al. Three-dimensional free vibration analysis of thick cylindrical shells with general end conditions and resting on elastic foundations[J]. International Journal of Mechanical Sciences,2014,84: 120-137.
    [12] 徐坤, 陈美霞, 谢坤. 正交各向异性功能梯度材料平板振动分析[J]. 噪声与振动控制, 2016,36(4): 14-20.(XU Kun, CHEN Meixia, XIE Kun. Vibration analysis of orthotropic functionally graded plates[J]. Noise and Vibration Control,2016,36(4): 14-20.(in Chinese))
    [13] 丁皓江, 陈伟球, 徐荣桥. 横观各向同性层合矩形板弯曲、振动和稳定的三维精确分析[J]. 应用数学和力学, 2001,22(1): 16-22.(DING Haojiang, CHEN Weiqiu, XU Rongqiao. On the bending, vibration and stability of laminated rectangular plates with transversely isotropic layers[J]. Applied Mathematics and Mechanics,2001,22(1): 16-22.(in Chinese))
    [14] 吕朝锋. 基于状态空间架构的微分求积法及其应用[D]. 博士学位论文. 杭州: 浙江大学, 2006.(L Chaofeng. State-space-based differential quadrature method and its applications[D]. PhD Thesis. Hangzhou: Zhejiang University, 2006.(in Chinese))
    [15] SAADA A S. Elasticity: Theory and Applications [M]. 2nd ed. Florida: Ross Publishing Inc, 2009.
    [16] YE T, JIN G, SU Z. Three-dimensional vibration analysis of sandwich and multilayered plates with general ply stacking sequences by a spectral-sampling surface method[J]. Composite Structures,2017,176: 1124-1142.
    [17] REDDY J N. Energy Principles and Variational Methods in Applied Mechanic [M]. New York: John Wiley & Sons, 1984.
    [18] YE T, JIN G, SU Z. A spectral-sampling surface method for the vibration of 2-D laminated curved beams with variable curvatures and general restraints[J]. International Journal of Mechanical Sciences,2016,110: 170-189.
    [19] JIN G, YE T, SU Z. Elasticity solution for vibration of 2-D curved beams with variable curvatures using a spectral-sampling surface method[J]. International Journal for Numerical Methods in Engineering,2017,111(11): 1075-1100.
    [20] YE T, JIN G, ZHANG Y. Vibrations of composite laminated doubly-curved shells of revolution with elastic restraints including shear deformation, rotary inertia and initial curvature[J]. Composite Structures,2015,133: 202-225.
    [21] 瞿叶高, 华宏星, 谌勇, 等. 复合材料旋转壳自由振动分析的新方法[J]. 力学学报, 2013,45(1): 139-143.(QU Yegao, HUA Hongxing, CHEN Yong, et al. A new method for free vibration analysis of composite laminated shelles of revolution[J]. Chinese Journal of Theoretical and Applied Mechanics,2013,45(1): 139-143.(in Chinese))
    [22] 瞿叶高, 孟光, 华宏星, 等. 基于区域分解的薄壁回转壳自由振动分析[J]. 应用力学学报, 2013,30(1): 1-6.(QU Yegao, MENG Guang, HUA Hongxing, et al. Free vibration analysis of thin shells of revolution based on domain decomposition method [J]. Chinese Journal of Applied Mechanics,2013,30(1): 1-6.(in Chinese))
    [23] YE T, JIN G. Elasticity solution for vibration of generally laminated beams by a modified Fourier expansion-based sampling surface method[J].Computers & Structures,2016,167: 115-130.
    [24] YE T, JIN G, YE X, et al. A series solution for the vibrations of composite laminated deep curved beams with general boundaries[J]. Composite Structures,2015,127: 450-465.
    [25] PAGANO N J. Exact solutions for rectangular bidirectional composites and sandwich plates[J]. Journal of Composite Materials,1970,4(1): 20-34.
    [26] QU Y, WU S, LI H, et al. Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: beams, plates and solids[J]. Composites Part B: Engineering,2015,73: 96-110.
    [27] CHEN W Q, L C F. 3D free vibration analysis of cross-ply laminated plates with one pair of opposite edges simply supported[J]. Composite Structures,2005,69(1): 77-87.
    [28] YE T, JIN G, SU Z, et al. A modified Fourier solution for vibration analysis of moderately thick laminated plates with general boundary restraints and internal line supports[J]. International Journal of Mechanical Sciences,2014,80: 29-46.
    [29] NOSIER A, KAPANIA R, REDDY J. Free vibration analysis of laminated plates using a layer-wise theory[J]. AIAA Journal,2013,31(12): 2335-2346.
    [30] QU Y, MENG G. Dynamic analysis of composite laminated and sandwich hollow bodies of revolution based on three-dimensional elasticity theory[J]. Composite Structures,2014,112: 378-396.
  • 加载中
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  131
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-05-19
  • 刊出日期:  2019-01-01

目录

    /

    返回文章
    返回