## 留言板

 引用本文: 张珺, 李立州, 原梅妮. 径向基函数参数化翼型的气动力降阶模型优化[J]. 应用数学和力学, 2019, 40(3): 250-258.
ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187
 Citation: ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258.

• 中图分类号: O302

## Optimization of RBF Parameterized Airfoils With the Aerodynamic ROM

Funds: The National Natural Science Foundation of China(51775518)
• 摘要: 基于小扰动和弱非线性假设，提出了一种基于气动力降阶模型和径向基函数参数化的翼型优化方法.其主要方法是用径向基函数参数化翼型扰动；通过CFD辨识参数扰动对翼型气动力影响的降阶模型核函数；基于叠加法建立了参数变化对翼型气动力影响的降阶模型；最后基于该气动力降阶模型计算并优化翼型升阻特性.NACA0012翼型优化的结果表明基于气动力降阶模型的优化方法是可行的，可以极大地提高翼型优化速度.
•  [1] ZHANG M C, GOU W X, LI L, et al. Multidisciplinary design and multi-objective optimization on guide fins of twin-web disk using Kriging surrogate model[J]. Structural & Multidisciplinary Optimization,2017,55(1): 361-373. [2] WEI P F, WANG Y Y, TANG C H. Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes[J]. Structural and Multidisciplinary Optimization,2017,55(5): 1883-1898. [3] GHOREYSHI M, JIRASEK A, CUMMINGS M R. Reduced order unsteady aerodynamic modeling for stability and control analysis using computational fluid dynamics[J]. Progress in Aerospace Sciences,2014,71: 167-217. [4] SILVA W A. Reduced-order models based on linear and nonlinear aerodynamic impulse responses[J]. AIAA Journal,1999,233: 1-11. [5] SU D, ZHANG W W, MA M S, et al. An efficient coupled method of cascade flutter investigation based on reduced order model[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.San Jose City, USA, 2013. [6] SU D, ZHANG W W, YE Z Y. A reduced order model for uncoupled and coupled cascade flutter analysis[J]. Journal of Fluids and Structures,2016,61: 410-430. [7] XU K, ZHAO L, GE Y J. Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics,2017,167: 228-241. [8] WONG A, NITZSCHE F, KHALID M. Formulation of reduced-order models for blade-vortex interaction using modifiedvolterra kernels[C]// The 〖STBX〗30th European Rotorcraft Forum(ERF).Marseilles, France, 2004. [9] HE L. Fourier methods forturbomachinery applications[J]. Progress in Aerospace Sciences,2010,46: 329-341. [10] YAO W G, JAIMAN R K. A harmonic balance technique for the reduced-order computation of vortex-induced vibration[J]. Journal of Fluids and Structures,2016,65: 313-332. [11] 罗骁, 张新燕, 张珺, 等. 基于谐波平衡法的尾流激励的叶片振动降阶模型方法[J]. 应用数学和力学, 2018,39(8): 892-899.(LUO Xiao, ZHANG Xinyan, ZHANG Jun, et al. A reduced-order model method for blade vibration due to upstream wake based on the harmonic balance method[J]. Applied Mathematics and Mechanics,2018,39(8): 892-899.(in Chinese)) [12] BOURGUET R, BRAZA M, DERVIEUX A. Reduced-order modeling of transonic flows around an airfoil submitted to small deformations[J]. Journal of Computational Physics,2011,230(1): 159-184. [13] LI X T, LIU Y L, KOU J Q, et al. Reduced-order thrust modeling for an efficiently flapping airfoil using system identification method[J]. Journal of Fluids and Structures,2017,69: 137-153. [14] KOU J Q, ZHANG W W. Multi-kernel neural networks for nonlinear unsteady aerodynamic reduced-order modeling[J]. Aerospace Science and Technology,2017,67: 309-326. [15] 王梓伊, 张伟伟. 适用于参数可调结构的非定常气动力降阶建模方法[J]. 航空学报, 2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(WANG Ziyi, ZHANG Weiwei. Unsteady aerodynamic reduced-order modeling method for parameter changeable structure[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6): 220829. DOI: 10.7527/S1000-6893.2017.120829.(in Chinese)) [16] ZHANG W W, CHEN K J, YE Z Y. Unsteady aerodynamic reduced-order modeling of an aeroelastic wing using arbitrary mode shapes[J]. Journal of Fluids and Structures,2015,58: 254-270. [17] CHEN G, LI D F, ZHOU Q, et al. Efficient aeroelastic reduced order model with global structural modifications[J]. Aerospace Science and Technology,2018,76: 1-13. [18] 梅小宁, 杨树兴, 陈军. 低雷诺数小型折叠无人机翼型优化设计[J]. 航空计算技术, 2010,40(2): 14-17.(MEI Xiaoning, YANG Shuxing, CHEN Jun. Optimization design for low Reynolds number foldable Uav airfoil[J]. Aeronautical Computer Technique,2010,40(2): 14-17.(in Chinese)) [19] 黎旭, 龚春林, 谷良贤, 等. 基于CAD的半解析参数化几何建模方法[J]. 计算机与现代化, 2014(4): 1-7.(LI Xu, GONG Chunlin, GU Liangxian, et al. CAD-based semi-analytical parametric geometry modeling method[J]. Computer and Modernization,2014(4): 1-7.(in Chinese)) [20] 张德虎, 席胜, 田鼎. 典型翼型参数化方法的翼型外形控制能力评估[J]. 航空工程进展, 2014,5(3): 281-288.(ZHANG Dehu, XI Sheng, TIAN Ding. Geometry control ability evaluation of classical airfoil parametric methods[J]. Advances in Aeronautical Science and Engineering,2014,5(3): 281-288.(in Chinese)) [21] 廖炎平, 刘莉, 龙腾. 几种翼型参数化方法研究[J]. 弹箭与制导学报, 2011,31(3): 160-164.(LIAO Yanping, LIU Li, LONG Teng. The research on some parameterized methods for airfoil[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2011,31(3): 160-164.(in Chinese)) [22] 吴宗敏. 径向基函数、散乱数据拟合与无网格偏微分方程数值解[J]. 工程数学学报, 2002,19(2): 1-12.(WU Zongmin. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs[J]. Journal of Engineering Mathematics,2002,19(2): 1-12.(in Chinese)) [23] 林谢昭, 胡振明. 流固耦合模型的适应性POD降阶方法研究现状[J]. 机械制造与自动化, 2017,46(4): 78-84.(LIN Xiezhao, HU Zhenming. Present situation of adaptive POD method for fluid-solid coupling model[J]. Machine Building & Automation,2017,46(4): 78-84.(in Chinese))
##### 计量
• 文章访问数:  1303
• HTML全文浏览量:  278
• PDF下载量:  715
• 被引次数: 0
##### 出版历程
• 收稿日期:  2018-06-28
• 修回日期:  2018-11-29
• 刊出日期:  2019-03-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈