[1] |
KOOPMANS T C. Analysis of production as an efficient combination of activities[J]. Analysis of Production and Allocation,1951,158(1): 33-97.
|
[2] |
KUHN H W, TUCKER A W. Nonlinear programming[C]// Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability.Berkeley, San Francisco, USA, 1951.
|
[3] |
GEOFFRION A M. Proper efficiency and the theory of vector maximization[J]. Journal of Mathematical Analysis and Applications,1968,22(3): 618-630.
|
[4] |
BORWEIN J M. Proper efficient points for maximizations with respect to cones[J]. SIAM Journal on Control and Optimization,1977,15(1): 57-63.
|
[5] |
BENSON H P. An improved definition of proper efficiency for vector maximization with respect to cones[J]. Journal of Mathematical Analysis and Applications,1979,71(1): 232-241.
|
[6] |
HENIG I. Proper efficiency with respect to cones[J]. Journal of Optimization Theory and Applications,1982,36(3): 387-407.
|
[7] |
BENTAL A, NEMIROVSKI A. Robust truss topology design via semidefinite programming[J]. SIAM Journal on Optimization,1997,7(4): 991-1016.
|
[8] |
KUROIWA D, LEE G M. On robust multiobjective optimization[J]. Journal of Nonlinear and Convex Analysis,2012,40(2/3): 305-317.
|
[9] |
EHROGOTT M, IDE J, SCHOBEL A. Minimax robustness for multi-objective optimization problems[J]. European Journal of Operational Research,2014,239(1): 17-31.
|
[10] |
IDE J, SCHOBEL A. Robustness for uncertain multi-objective optimization: a survey and analysis of different concepts[J]. OR Spectrum,2016,38(1): 235-271.
|
[11] |
GOBERNA M A, JEYAKUMAR V, LI G, et al. Robust solutions of multi-objective linear semi-infinite programs under constraint date uncertain[J]. SIAM Journal on Optimization,2014,24(3): 1402-1419.
|
[12] |
GEORGIEV P J, LUC D T, PRDALOS P. Robust aspects of solutions in deterministic multiple objective linear programming[J]. European Journal of Operational Research,2013,229(1): 29-36.
|
[13] |
ZAMANI M, SOLEIMANI-DAMANEH M, KABGANI A. Robustness in nonsmooth nonlinear multi-objective programming[J].European Journal of Operational Research,2015,247(2): 370-378.
|
[14] |
MORTEZA R, MAJID S D. Robustness in deterministic vector optimization[J]. Journal of Optimization Theory and Applications,2018,179(1): 137-162.
|
[15] |
SAWARAGI Y, NAKAYAMA H, TANINO T. Theory of Multiobjective Optimization [M]. London: Academic Press, 1985.
|
[16] |
MARKO M M, PEKKA N. Nonsmooth Optimization [M]. London: World Scientific, 1992.
|
[17] |
杨新民. Benson真有效解与Borwein真有效解的等价性[J]. 应用数学, 1994,7(2): 246-247.(YANG Xinmin. Equivalence between Benson proper efficient solution and Borwein proper efficient solution[J]. Applied Mathematics,1994,7(2): 246-247.(in Chinese))
|
[18] |
李小燕, 高英. 多目标优化问题Proximal真有效解的最优性条件[J]. 应用数学和力学, 2015,36(6): 668-676.(LI Xiaoyan, GAO Ying. The optimality conditions of Proximal proper efficient solution for multi-objective optimization[J]. Applied Mathematics and Mechanics,2015,36(6): 668-676.(in Chinese))
|
[19] |
FAKHAR M, MAHYARINIA M R, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research,2018,265(1): 39-48.
|