留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究

周博 郑雪瑶 康泽天 薛世峰

周博, 郑雪瑶, 康泽天, 薛世峰. 基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究[J]. 应用数学和力学, 2019, 40(12): 1321-1334. doi: 10.21656/1000-0887.400056
引用本文: 周博, 郑雪瑶, 康泽天, 薛世峰. 基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究[J]. 应用数学和力学, 2019, 40(12): 1321-1334. doi: 10.21656/1000-0887.400056
ZHOU Bo, ZHENG Xueyao, KANG Zetian, XUE Shifeng. A Timoshenko Micro-Beam Model and Its Size Effects Based on the Modified Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1321-1334. doi: 10.21656/1000-0887.400056
Citation: ZHOU Bo, ZHENG Xueyao, KANG Zetian, XUE Shifeng. A Timoshenko Micro-Beam Model and Its Size Effects Based on the Modified Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1321-1334. doi: 10.21656/1000-0887.400056

基于修正偶应力理论的Timoshenko微梁模型和尺寸效应研究

doi: 10.21656/1000-0887.400056
基金项目: 国家重点研发计划(2017YFC0307604)
详细信息
    作者简介:

    周博(1972—),男,教授,博士,博士生导师(通讯作者. E-mail: zhoubo@upc.edu.cn);郑雪瑶(1995—),女,硕士生(E-mail: xueyaozheng@126.com);康泽天(1992—),男,博士生(E-mail: kangzt_upc@163.com);薛世峰(1963—),男,教授,博士生导师(E-mail: sfeng@upc.edu.cn).

  • 中图分类号: O342

A Timoshenko Micro-Beam Model and Its Size Effects Based on the Modified Couple Stress Theory

Funds: The National Key R&D Program of China(2017YFC0307604)
  • 摘要: 基于修正偶应力理论,将Timoshenko微梁的应力、偶应力、应变、曲率等基本变量,描述为位移分量偏导数的表达式.根据最小势能原理,推导了决定Timoshenko微梁位移场的位移场控微分方程.利用级数法求解了任意载荷作用下Timoshenko简支微梁的位移场控微分方程,得到了反映尺寸效应的挠度、转角及应力的偶应力理论解.通过对承受余弦分布载荷Timoshenko简支微梁的数值计算,研究了Timoshenko微梁的挠度、转角和应力的尺寸效应,分析了Poisson比对Timoshenko微梁力学行为及其尺寸效应的影响.结果表明:当截面高度与材料特征长度的比值小于5时,Timoshenko微梁的刚度和强度均随着截面高度的减小而显著提高,表现出明显的尺寸效应;当截面高度与材料特征长度的比值大于10时,Timoshenko微梁的刚度与强度均趋于稳定,尺寸效应可以忽略;材料Poisson比是影响Timoshenko微梁力学行为及尺寸效应的重要因素,Poisson比越大Timoshenko微梁刚度和强度的尺寸效应越显著.该文建立的Timoshenko微梁模型,能有效描述Timoshenko微梁的力学行为及尺寸效应,可为微电子机械系统(MEMS)中的微结构设计与分析提供理论基础和技术参考.
  • [1] KOUZELI M, MORTENSEN A. Size dependent strengthening in particle reinforced aluminium[J]. Acta Materialia,2002,〖STHZ〗 50(1): 39-51.
    [2] LAMA D C C, YANG F, CHONGA A C M. Experiments and theory in strain gradient elasticity[J]. Journal of the Mechanics and Physics of Solids,2003,51(8): 1477-1508.
    [3] 孙亮, 王珺, 韩平畴. 单根聚己内酯电纺亚微米纤维的动力学特性分析[J]. 高分子学报, 2009(6): 535-539.(SUN Liang, WANG Jun, HAN Pingchou. A dynamic investigation of the properties of a single-strand, electrospun PCL sub-micro fiber[J]. Acta Polymerica Sinica,2009(6): 535-539.(in Chinese))
    [4] BAZANT Z P. Size effect in blunt fracture: concrete, rock, metal[J]. Journal of Engineering Mechanics,1984,110(4): 518-535.
    [5] TOUPIN R A. Elastic materials with couple stresses[J]. Archive for Rational Mechanics and Analysis,1962, 11(1): 385-414.
    [6] MINDLIN R D, TIERSTEN H F. Effects of couple-stresses in linear elasticity[J]. Archive for Rational Mechanics and Analysis,1962,11(1): 415-448.
    [7] MINDLIN R D. Influence of couple-stresses on stress concentrations[J]. Experimental Mechanics,1963,3(12): 1-7.
    [8] 陈少华, 王自强. 应变梯度理论进展[J]. 力学进展, 2003,33(2): 207-216.(CHEN Shaohua, WANG Ziqiang. Advances in strain gradient theory[J]. Advances in Mechanics,2003,33(2): 207-216.(in Chinese))
    [9] YANG F, CHONG A, LAM D. Couple stress based strain gradient theory for elasticity[J]. International Journal of Solids and Structures,2002,39(10): 2731-2743.
    [10] PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J]. Journal of Micromechanics & Microengineering,2006,16(11): 2355-2359.
    [11] REDDY J N. Microstructure-dependent couple stress theories of functionally graded beams[J]. Journal of the Mechanics and Physics of Solids,2011,59(11): 2382-2399.
    [12] KE L L, YANG J, KITIPORNCHAI S. Bending, buckling and vibration of size-dependent functionally graded annular microplates[J]. Composite Structures,2012,94(11): 3250-3257.
    [13] 陈万吉, 郑楠. 偶应力理论层合梁的稳定性及尺寸效应[J]. 沈阳航空航天大学学报, 2012,29(4): 29-34.(CHEN Wanji, ZHENG Nan. Stability analysis of composite laminated beam based on couple stress theory and the scale effect[J]. Journal of Shenyang Aerospace University,2012,29(4): 29-34.(in Chinese))
    [14] SIMSEK M, REDDY J N. A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory[J]. Composite Structures,2013,〖STHZ〗 101: 47-58.
    [15] BEKIR A, CIVALEK O. Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory[J]. Composite Structures,2013,98: 314-322.
    [16] 李安庆, 周慎杰, 周莎莎. 双层梁固有特性的尺寸效应[J]. 工程力学, 2014,31(7): 223-228.(LI Anqing, ZHOU Shenjie, ZHOU Shasha. The size-dependent inherent property of bilayered micro-beams[J]. Engineering Mechanics,2014,31(7): 223-228.(in Chinese))
    [17] DEHROUYEH-SEMNANI A M, NIKKHAH-BAHRAMI M. The influence of size-dependent shear deformation on mechanical behavior of microstructures-dependent beam based on modified couple stress theory[J]. Composite Structures,2015,123: 325-336.
    [18] 尹春松, 杨洋. 基于非局部铁木辛柯梁模型的碳纳米管弯曲特性研究[J]. 固体力学学报, 2015,36(S1): 165-169.(YIN Chunsong, YANG Yang. Shear deformable deformation of carbon nanotubes based on analytical nonlocal Timoshenko beam model[J]. Chinese Journal of Solid Mechanics,2015,〖STHZ〗 36(S1): 165-169.(in Chinese))
    [19] MOHAMMAD-ABADI M, DANESHMEHR A R. Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories[J]. International Journal of Engineering Science,2015,87: 83-102.
    [20] MAJID A K, MAHMOUD S, SAMIR A E. Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory[J]. International Journal of Mechanical Sciences,2016,110: 160-169.
    [21] 苏文政, 刘书田. 一类多孔固体的等效偶应力动力学梁模型[J]. 力学学报, 2016,48(1): 111-126.(SU Wenzheng, LIU Shutian. Effective couple-stress dynamic beam model of a typical cellular solid[J]. Chinese Journal of Theoretical and Applied Mechanics,2016,48(1): 111-126.(in Chinese))
    [22] 贺丹, 杨万里. 基于修正偶应力和高阶剪切变形理论的变截面微梁的自由振动[J]. 计算力学学报, 2017,34(3): 292-296.(HE Dan, YANG Wanli. Free vibration analysis of non-uniform micro-beams based on modified couple stress theory and high order shear deformation theory[J]. Chinese Journal of Computational Mechanics,2017,34(3): 292-296.(in Chinese))
    [23] 贺丹, 杨子豪. 基于一种新修正偶应力理论的平面正交各向异性功能梯度梁静弯曲模型及尺寸效应[J]. 复合材料学报, 2017,34(4): 538-544.(HE Dan, YANG Zihao. Static bending model and size effect of plane orthotropic functionally graded beam on a new modified couple stress theory[J]. Acta Materiae Compositae Sinica,2017,34(4): 538-544.(in Chinese))
    [24] FANG J, GU J, WANG H. Size-dependent three-dimensional free vibration of rotating functionally graded microbeams based on a modified couple stress theory[J]. International Journal of Mechanical Sciences,2018,136: 188-199.
    [25] 朱军华, 苏伟, 刘人怀, 等. 静电驱动阶梯型微悬臂梁吸合电压分析[J]. 机械工程学报, 2018,54(8): 217-222.(ZHU Junhua, SU Wei, LIU Renhuai, et al. Pull-in voltage analysis of electrostatically actuated stepped micro-cantilever beam[J]. Journal of Mechanical Engineering,2018,54(8): 217-222.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  220
  • PDF下载量:  467
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-22
  • 修回日期:  2019-09-18
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回