[1] |
NAYFEH A H. Introduction to Perturbation Techniques [M]. New York: John Wiley & Sons Inc, 1981.
|
[2] |
DE JAGER E M, FURU J F. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
|
[3] |
BOH A. The shock solution for a class of sensitive boundary value problems[J]. Journal of Mathematical Analysis and Applications,1999,235(1): 295-314.
|
[4] |
倪明康, 林武忠. 边界层函数法在微分不等式中的应用[J]. 华东师范大学学报(自然科学版), 2007(3): 1-10.(NI Mingkang, LIN Wuzhong. Application of boundary layer function method in differential inequality[J]. Journal of East China Normal University(Natural Science),2007(3): 1-10.(in Chinese))
|
[5] |
葛志新, 陈咸奖, 陈松林. 一类含有分数阶导数的二自由度耦合系统[J]. 应用数学和力学, 2017,38(11): 1300-1308.(GE Zhixin, CHEN Xianjiang, CHEN Songlin. A class of 2-DOF coupled systems with fractional-order derderivatives[J].Applied Mathematics and Mechanics,2017,38(11): 1300-1308.(in Chinese))
|
[6] |
冯依虎, 陈怀军, 莫嘉琪. 一类非线性奇异摄动自治微分系统的渐近解[J]. 应用数学和力学, 2018,39(3): 355-363.(FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic solution to a class of nonlinear singular perturbation autonomous differential systems[J]. Applied Mathematics and Mechanics,2018,39(3): 355-363.(in Chinese))
|
[7] |
莫嘉琪. 非线性分数阶微分方程的奇摄动[J]. 应用数学学报, 2006,29(6): 1085-1089.(MO Jiaqi. Singularly perturbed problems for nonlinear fractional differential equation[J]. Acta Mathematicae Applicatae Sinica,2006,29(6): 1085-1089.(in Chinese))
|
[8] |
SHI J R, MO J Q. Asymptotic solution for a class of singularly perturbed initial value problem of fractional differential equation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2015,48(5): 60-64.
|
[9] |
林学渊, 谢峰. 一类非线性分数阶微分方程的奇异摄动[J]. 东华大学学报(自然科学版), 2009,35(2): 238-240.(LIN Xueyuan, XIE Feng. Singular perturbation for a kind of nonlinear fractional differential equations[J]. Journal of Donghua University(Natural Science),2009,35(2): 238-240.(in Chinese))
|
[10] |
莫嘉琪, 温朝晖. 一类非线性奇摄动分数阶微分方程的渐近解[J]. 系统科学与数学, 2010,30(12): 1689-1694.(MO Jiaqi, WEN Zhaohui. Asymptotic solution for a class of nonlinear singularly perturbed for fractional differential equation[J]. Journal of Systems Science and Mathematical Sciences,2010,30(12): 1689-1694.(in Chinese))
|
[11] |
FENG Y H, MO J Q. Asymptopic solution for singularly perturbed fractional order differential equation[J]. Journal of Mathematic,2016,36(2): 239-245.
|
[12] |
WANG W K, SHI L F, HAN X L, et al. Singular perturbation problem for reaction diffusion time delay equation with boundary perturbation[J]. Chinese Journal of Engineering Mathematics,2015,32(2): 291-297.
|
[13] |
MO J Q, WANG W G, CHEN X G, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata,2014,27(3): 470-475.
|
[14] |
MO J Q. The shock solutions for a class of singularly perturbed time delay boundary value problems[J]. Journal of Anhui Normal University(Natural Science),2013,36(4): 314-318.
|
[15] |
欧阳成. 具有小延迟的微分-差分方程渐近解[J]. 吉林大学学报(理学版), 2008,46(4): 628-932.(OUYANG Cheng. Asymptotic solution of initial value problems for differential-difference equation with small time delay[J]. Journal of Jilin University(Science Edition),2008,46(4): 628-632.(in Chinese))
|
[16] |
DELBOSCO D, RODINO L. Existence and uniqueness for nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications,1996,204: 609-625.
|
[17] |
莫嘉琪. 一类两参数半线性奇摄动问题解的渐近性态[J]. 应用数学学报, 2009,32(5): 903-908.(MO Jiaqi. The Asymptotic behavior of solution for a class of semilinear singular perturbed problem with two parameters[J]. Acta Mathematicae Applicatae Sinica,2009,32(5): 903-908.(in Chinese))
|