留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类分数阶非线性时滞问题的奇摄动

朱红宝

朱红宝. 一类分数阶非线性时滞问题的奇摄动[J]. 应用数学和力学, 2019, 40(12): 1356-1363. doi: 10.21656/1000-0887.400195
引用本文: 朱红宝. 一类分数阶非线性时滞问题的奇摄动[J]. 应用数学和力学, 2019, 40(12): 1356-1363. doi: 10.21656/1000-0887.400195
ZHU Hongbao. A Class of Fractional Nonlinear Singularly Perturbed Problems With Time Delays[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1356-1363. doi: 10.21656/1000-0887.400195
Citation: ZHU Hongbao. A Class of Fractional Nonlinear Singularly Perturbed Problems With Time Delays[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1356-1363. doi: 10.21656/1000-0887.400195

一类分数阶非线性时滞问题的奇摄动

doi: 10.21656/1000-0887.400195
基金项目: 安徽省高校自然科学研究重点项目(KJ2019A0062)
详细信息
    作者简介:

    朱红宝(1975—),男,硕士(E-mail: zhuhb@ahut.edu.cn).

  • 中图分类号: O175.14

A Class of Fractional Nonlinear Singularly Perturbed Problems With Time Delays

  • 摘要: 讨论了一类奇异摄动非线性分数阶时滞问题.首先利用奇异摄动方法求出了问题的外部解.再利用伸展变量法构造了问题在边界附近的两个边界层校正项,得出了所提问题的形式渐近解.最后,在合适的假设条件下,利用微分不等式理论证明了解的一致有效性,并给出了结论及未来的研究方向.
  • [1] NAYFEH A H. Introduction to Perturbation Techniques [M]. New York: John Wiley & Sons Inc, 1981.
    [2] DE JAGER E M, FURU J F. The Theory of Singular Perturbation [M]. Amsterdam: North-Holland Publishing Co, 1996.
    [3] BOH A. The shock solution for a class of sensitive boundary value problems[J]. Journal of Mathematical Analysis and Applications,1999,235(1): 295-314.
    [4] 倪明康, 林武忠. 边界层函数法在微分不等式中的应用[J]. 华东师范大学学报(自然科学版), 2007(3): 1-10.(NI Mingkang, LIN Wuzhong. Application of boundary layer function method in differential inequality[J]. Journal of East China Normal University(Natural Science),2007(3): 1-10.(in Chinese))
    [5] 葛志新, 陈咸奖, 陈松林. 一类含有分数阶导数的二自由度耦合系统[J]. 应用数学和力学, 2017,38(11): 1300-1308.(GE Zhixin, CHEN Xianjiang, CHEN Songlin. A class of 2-DOF coupled systems with fractional-order derderivatives[J].Applied Mathematics and Mechanics,2017,38(11): 1300-1308.(in Chinese))
    [6] 冯依虎, 陈怀军, 莫嘉琪. 一类非线性奇异摄动自治微分系统的渐近解[J]. 应用数学和力学, 2018,39(3): 355-363.(FENG Yihu, CHEN Huaijun, MO Jiaqi. Asymptotic solution to a class of nonlinear singular perturbation autonomous differential systems[J]. Applied Mathematics and Mechanics,2018,39(3): 355-363.(in Chinese))
    [7] 莫嘉琪. 非线性分数阶微分方程的奇摄动[J]. 应用数学学报, 2006,29(6): 1085-1089.(MO Jiaqi. Singularly perturbed problems for nonlinear fractional differential equation[J]. Acta Mathematicae Applicatae Sinica,2006,29(6): 1085-1089.(in Chinese))
    [8] SHI J R, MO J Q. Asymptotic solution for a class of singularly perturbed initial value problem of fractional differential equation[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis,2015,48(5): 60-64.
    [9] 林学渊, 谢峰. 一类非线性分数阶微分方程的奇异摄动[J]. 东华大学学报(自然科学版), 2009,35(2): 238-240.(LIN Xueyuan, XIE Feng. Singular perturbation for a kind of nonlinear fractional differential equations[J]. Journal of Donghua University(Natural Science),2009,35(2): 238-240.(in Chinese))
    [10] 莫嘉琪, 温朝晖. 一类非线性奇摄动分数阶微分方程的渐近解[J]. 系统科学与数学, 2010,30(12): 1689-1694.(MO Jiaqi, WEN Zhaohui. Asymptotic solution for a class of nonlinear singularly perturbed for fractional differential equation[J]. Journal of Systems Science and Mathematical Sciences,2010,30(12): 1689-1694.(in Chinese))
    [11] FENG Y H, MO J Q. Asymptopic solution for singularly perturbed fractional order differential equation[J]. Journal of Mathematic,2016,36(2): 239-245.
    [12] WANG W K, SHI L F, HAN X L, et al. Singular perturbation problem for reaction diffusion time delay equation with boundary perturbation[J]. Chinese Journal of Engineering Mathematics,2015,32(2): 291-297.
    [13] MO J Q, WANG W G, CHEN X G, et al. The shock wave solutions for singularly perturbed time delay nonlinear boundary value problems with two parameters[J]. Mathematica Applicata,2014,27(3): 470-475.
    [14] MO J Q. The shock solutions for a class of singularly perturbed time delay boundary value problems[J]. Journal of Anhui Normal University(Natural Science),2013,36(4): 314-318.
    [15] 欧阳成. 具有小延迟的微分-差分方程渐近解[J]. 吉林大学学报(理学版), 2008,46(4): 628-932.(OUYANG Cheng. Asymptotic solution of initial value problems for differential-difference equation with small time delay[J]. Journal of Jilin University(Science Edition),2008,46(4): 628-632.(in Chinese))
    [16] DELBOSCO D, RODINO L. Existence and uniqueness for nonlinear fractional differential equation[J]. Journal of Mathematical Analysis and Applications,1996,204: 609-625.
    [17] 莫嘉琪. 一类两参数半线性奇摄动问题解的渐近性态[J]. 应用数学学报, 2009,32(5): 903-908.(MO Jiaqi. The Asymptotic behavior of solution for a class of semilinear singular perturbed problem with two parameters[J]. Acta Mathematicae Applicatae Sinica,2009,32(5): 903-908.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1302
  • HTML全文浏览量:  191
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-20
  • 修回日期:  2019-08-10
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回