## 留言板

 引用本文: 李远飞, 曾鹏, 陈雪姣. 二元热传导方程的Phragmén-Lindelöf型二择一结果[J]. 应用数学和力学, 2021, 42(9): 968-978.
LI Yuanfei, ZENG Peng, CHEN Xuejiao. The Phragmén-Lindelöf Type Alternative Results for Binary Heat Conduction Equations[J]. Applied Mathematics and Mechanics, 2021, 42(9): 968-978. doi: 10.21656/1000-0887.420031
 Citation: LI Yuanfei, ZENG Peng, CHEN Xuejiao. The Phragmén-Lindelöf Type Alternative Results for Binary Heat Conduction Equations[J]. Applied Mathematics and Mechanics, 2021, 42(9): 968-978.

## 二元热传导方程的Phragmén-Lindelöf型二择一结果

##### doi: 10.21656/1000-0887.420031

###### 通讯作者: 李远飞(1982—),男,特聘教授,博士(通讯作者. E-mail: liqfd@163.com).
• 中图分类号: O175.29

## The Phragmén-Lindelöf Type Alternative Results for Binary Heat Conduction Equations

• 摘要: 考虑了二元热传导方程在半无穷区域上解的渐近性质, 其中在柱体的侧面上施加局部非齐次Neumann条件.这种条件模拟了柱体侧面上的绝热材料受到局部破坏的情形.利用微分不等式技术和能量分析的方法, 得到了热传导模型的Phragmén-Lindelöf型二择一结果
•  LIESS O. Necessary conditions in Phragmén-Lindelöf type estimates and decomposition of holomorphic functions[J].Mathematische Nachrichten,2017,290(8/9): 1328-1346. [2]李远飞, 石金诚, 曾鹏. 三维柱体上调和方程的二择一结果[J]. 海南大学学报自然科学版, 2020,38(1): 6-12.(LI Yuanfei, SHI Jincheng, ZENG Peng. Phragmén-Lindelöf alternative type results for the harmonic equation in a 3D cylinder[J].Natural Science Journal of Hainan University,2020,38(1): 6-12.(in Chinese)) [3]MARKOWSKY G. The exit time of planar Brownian motion and thePhragmén-Lindelöf Principle[J].Journal of Mathematical Analysis & Applications,2015,422(1): 638-645. [4]GENTILI G, STOPPATO C, STRUPPA D C. A Phragmén-Lindelöf principle for slice regular functions[J].Bulletin of the Belgian Mathematical Society-Simon Stevin,2011,18(4): 749-759. [5]LIU Yan, LIN Changhao. Phragmén-Lindelöf alternative type alternative results for the stokes flow equation[J].Mathematical Inequalities & Applications,2006,9(4): 671-694. [6]李远飞. 在一个半无穷柱体上的非标准Stokes流体方程的二择一问题[J]. 应用数学和力学, 2020,41(4): 406-419.(LI Yuanfei. Phragmén-Lindelöf type results for non-standard Stokes flow equations around semi-infinite cylinder[J].Applied Mathematics and Mechanics,2020,41(4): 406-419.(in Chinese)) [7]李远飞, 肖胜中, 郭连红, 等. 一类二阶拟线性瞬态方程组的Phragmén-Lindelöf型二择性结果[J]. 吉林大学学报(理学版), 2020,58(5): 1047-1054.(LI Yuanfei, XIAO Shengzhong, GUO Lianhong, et al. Phragmén-Lindelöf type alternative results for a class of second order quasilinear transient equations[J].Journal of Jilin University (Science Edition),2020,58(5): 1047-1054.(in Chinese)) [8]HORGAN C O, PAYNE L E. Phragmén-Lindelöf type results for harmonic functions with nonlinear boundary conditions[J].Archive for Rational Mechanics and Analysis,1993,122(2): 123-144. [9]李远飞, 李志青. 具有非线性边界条件的瞬态热传导方程的二择一结果[J]. 数学物理学报, 2020,40〖WTHZ〗A〖WTB4〗(5): 1248-1258.(LI Yuanfei, LI Zhiqing. Phragmén-Lindelöf type results for transient heat conduction equation with nonlinear boundary conditions[J].Acta Mathematica Scientia,2020,40A(5): 1248-1258.(in Chinese)) [10]YANG X, ZHOU Z F. Blow-up problems for the heat equation with a local nonlinear Neumann boundary condition[J].Journal of Differential Equations 2016,261(5): 2738-2783. [11]LESEDUARTE M C, QUINATANILLA R. Phragmén-Lindelöf of alternative for the Laplace equation with dynamic boundary conditions[J].Journal of Applied Analysis and Computation,2017,7(4): 1323-1335. [12]李远飞, 陈雪姣, 石金诚. 二元混合物中的热传导方程Phragmén-Lindelöf二择性[J]. 山东大学学报(理学版), 2020,55(12): 1-12, 24.(LI Yuanfei, CHEN Xuejiao, SHI Jincheng. Phragmén-Lindelöf alternative for the heat conduction equations in a binary mixture[J].Journal of Shandong University (Natural Science),2020,55(12): 1-12, 24.(in Chinese)) [13]李远飞, 曾鹏. 具有非线性边界条件的调和方程在无界区域上的Phragmén-Lindelöf二择性结果[J]. 河南大学学报(自然科学版), 2020,50(3): 365-372.(LI Yuanfei, ZENG Peng. Phragmén-Lindelöf alternative type results for the harmonic equation with nonlinear boundary conditions in an unbounded region[J].Journal of Henan University (Natural Science),2020,50(3): 365-372.(in Chinese)) [14]JAVIER J G, JAVIER S, GERHARD S. A Phragmén-Lindelöf theorem via proximate orders, and the propagation of asymptotics[J].The Journal of Geometric Analysis Volume,2020,30(4): 3458-3483. [15]IESAN D. A theory of mixtures with different constituent temperatures[J].Journal of Thermal Stresses,1997,20(2): 147-167. [16]QUINTANILLA R. Study of the solutions of the propagation of heat in mixtures[J]. Dynamics of Continuous, Discrete and Impulsive Systems (Series B): Applications and Algorithms,2001,8(1): 15-28. [17]IESAN D, QUINTANILLA R. On the problem of propagation of heat in mixtures[J].International Journal of Applied Mechanics and Engineering,1999,4(3): 529-552. [18]CIALET P G.Mathematical Elasticity(Vol I): Three-Dimensional Elasticity[M].Studies in Mathematics and Its Applications. Amsterdam, North-Holland: Springer, 1988. [19]HORGAN C, QUINTANILLA R. Spatial decay of transient end effects for nonstandard linear diffusion problems [J].IMA Journal of Applied Mathematics,2005,70(1): 119-128. [20]李远飞, 肖胜中, 陈雪姣. 非线性边界条件下具有变系数的热量方程解的存在性及爆破现象[J]. 应用数学和力学, 2021,42(1): 92-101.(LI Yuanfei, XIAO Shengzhong, CHEN Xuejiao. Existence and blow-up phenomena of solution to heat equations with variable coefficients under nonlinear boundary condutions[J].Applied Mathematics and Mechanics,2021,42(1): 92-101.(in Chinese)) [21]SHOWALTER R E. Cauchy problem for hyper-parabolic partial differential equations[J].Trends in the Theory and Practice of Non-Linear Analysis,1985,110: 421-425.

##### 计量
• 文章访问数:  261
• HTML全文浏览量:  52
• PDF下载量:  26
• 被引次数: 0
##### 出版历程
• 收稿日期:  2021-01-28
• 修回日期:  2021-03-24
• 网络出版日期:  2021-09-29

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈