留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究

梁佳 高明 陈露 王东民 王治云 章立新

梁佳,高明,陈露,王东民,王治云,章立新. 基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究 [J]. 应用数学和力学,2022,43(1):63-76 doi: 10.21656/1000-0887.420076
引用本文: 梁佳,高明,陈露,王东民,王治云,章立新. 基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究 [J]. 应用数学和力学,2022,43(1):63-76 doi: 10.21656/1000-0887.420076
LIANG Jia, GAO Ming, CHEN Lu, WANG Dongmin, WANG Zhiyun, ZHANG Lixin. Study on Droplets Impacting on Orifice Plates With Different Wettabilities Based on the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2022, 43(1): 63-76. doi: 10.21656/1000-0887.420076
Citation: LIANG Jia, GAO Ming, CHEN Lu, WANG Dongmin, WANG Zhiyun, ZHANG Lixin. Study on Droplets Impacting on Orifice Plates With Different Wettabilities Based on the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2022, 43(1): 63-76. doi: 10.21656/1000-0887.420076

基于格子Boltzmann方法的液滴撞击具有不同润湿性孔板的研究

doi: 10.21656/1000-0887.420076
基金项目: 国家自然科学基金(51976127)
详细信息
    作者简介:

    梁佳(1997—),男,硕士生(E-mail:liangjia195@163.com)

    高明(1982—),男,副教授,博士,博士生导师(通讯作者. E-mail:gaoming@usst.edu.cn)

  • 中图分类号: O359+.1

Study on Droplets Impacting on Orifice Plates With Different Wettabilities Based on the Lattice Boltzmann Method

  • 摘要:

    基于格子Boltzmann方法,对液滴撞击不同湿润性节流孔板表面进行了数值模拟。主要研究了在液滴撞击过程中,Weber数(We)、孔板表面湿润性和孔板尺寸对液滴通过孔板时不同状态的影响。数值模拟结果表明:孔板为亲水特性时,在较低We下,液滴不会与孔板表面脱离,而是附着在孔板下表面,并且在毛细作用下液滴会在孔道中上升一段距离,形成液塞现象,在较高We下,液滴会穿过孔板,并发生破裂现象;孔板为疏水特性时,在较低We下,液滴无法穿过孔板,且无法迁移至下表面,最终稳定在孔板孔道上,在较高We下,液滴能穿过孔板,穿过时会发生破裂,孔板上表面会残留液滴。改变孔板尺寸发现,在较小的孔板孔径以及较厚的孔板厚度下,液滴不易通过。

  • 图  1  Laplace定律验证

    Figure  1.  Verification of Laplace’s law

    图  2  模拟所得ξmax与Clanet模型[35]对比

    Figure  2.  Comparison of ξmax given by simulated results with Clanet et al.’s model[35]

    图  3  计算域简图

    Figure  3.  Schematic of the computation domain

    图  4  We对液滴撞击疏水孔板表面的影响($ \theta {\text{ = }}{120^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    Figure  4.  Effects of the We number of droplets impacting on hydrophobic orifice surface ($ \theta {\text{ = }}{120^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    图  5  We对液滴撞击疏水孔板表面的影响($ \theta {\text{ = }}{160^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    Figure  5.  Effects of the We number of droplets impacting on hydrophobic orifice surface ($ \theta {\text{ = }}{160^ \circ } $, L=20,H=10): (a) We=2.55; (b) We=7.95; (c) We=13.55

    图  6  疏水孔板ξ随无量纲时间变化

    Figure  6.  The ξ changes with the dimensionless time

    图  7  疏水孔板H* 随无量纲时间变化

    Figure  7.  The H* changes with the dimensionless time

    图  8  We对液滴撞击亲水孔板表面的影响($ \theta {\text{ = }}{60^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    Figure  8.  Effects of the We number of droplets impacting on hydrophilic orifice surface ($ \theta {\text{ = }}{60^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    图  9  We对液滴撞击亲水孔板表面的影响($ \theta {\text{ = }}{80^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    Figure  9.  Effects of the We number of droplets impacting on hydrophilic orifice surface ($ \theta {\text{ = }}{80^ \circ } $, L=20, H=10): (a) We=2.55; (b) We=7.95; (c) We=13.55

    图  10  亲水孔板ξ随无量纲时间变化

    Figure  10.  The ξ changes with the dimensionless time

    图  11  亲水孔板H* 随无量纲时间变化

    Figure  11.  The H* changes with the dimensionless time

    图  12  疏水孔板液滴的速度场($ \theta {\text{ = }}{160^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    Figure  12.  The velocity fields of the droplets on the hydrophobic plates ($ \theta {\text{ = }}{160^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    图  13  亲水孔板液滴的速度场($ \theta {\text{ = }}{80^ \circ } $L=20,H=10):(a) We =2.55;(b) We =7.95;(c) We =13.55

    Figure  13.  The velocity fields inside the droplets on the hydrophilic plates($ \theta {\text{ = }}{80^ \circ } $L=20,H=10):(a) We=2.55;(b) We=7.95;(c) We=13.55

    图  14  液滴撞击不同尺寸疏水节流孔板(We=13.55,$ \theta {\text{ = }}{160^ \circ } $)

    Figure  14.  Droplets impacting on different-size hydrophobic orifice plates (We=13.55,$ \theta {\text{ = }}{160^ \circ } $)

    图  15  液滴撞击不同尺寸亲水节流孔板(We=13.55,$ \theta {\text{ = }}{80^ \circ } $)

    Figure  15.  Droplets impacting on different-size hydrophilic orifice plates (We=13.55,$ \theta {\text{ = }}{80^ \circ } $)

  • [1] CHANDRA S, MOSTAGHIMI J. Spray impingement fundamentals[M]//Metal Sprays and Spray Deposition. HENEIN H, UHLENWINKEL V, FRITSCHING U, eds. Springer, 2017.
    [2] BURGUÉS-CEBALLOS I, STELLA M, LACHARMOISE P, et al. Towards industrialization of polymer solar cells: material processing for upscaling[J]. Journal of Materials Chemistry A, 2014, 2(42): 17711-17722. doi: 10.1039/C4TA03780D
    [3] SON Y, KIM C, YANG D H, et al. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers[J]. Langmuir, 2008, 24(6): 2900-2907. doi: 10.1021/la702504v
    [4] WORTHINGTON A. On the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1876, 25: 261-272.
    [5] WORTHINGTON A. A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate[J]. Proceedings of the Royal Society of London, 1876, 25: 498-503.
    [6] RIOBOO R, TROPEA C, MARENGO M. Outcomes from a drop impact on solid surfaces[J]. Atomization and Sprays, 2001, 11(2): 155-165.
    [7] WANG F C, FENG J T, ZHAO Y P. The head-on colliding process of binary liquid droplets at low velocity: high-speed photography experiments and modeling[J]. Journal of Colloid and Interface Science, 2008, 326(1): 196-200. doi: 10.1016/j.jcis.2008.07.002
    [8] 毕菲菲, 郭亚丽, 沈胜强, 等. 液滴撞击固体表面铺展特性的实验研究[J]. 物理学报, 2012, 61(18): 295-300. (BI Feifei, GUO Yali, SHEN Shengqiang, et al. Experimental study of spread characteristics of droplet impacting solid surface[J]. Acta Physica Sinica, 2012, 61(18): 295-300.(in Chinese)
    [9] LORENCEAU É, QUÉRÉ D. Drops impacting a sieve[J]. Journal of Colloid and Interface Science, 2003, 263(1): 244-249.
    [10] RICHARD D, QUÉRÉ D. Bouncing water drops[J]. Europhysics Letters, 2000, 50(6): 769-775. doi: 10.1209/epl/i2000-00547-6
    [11] PAN K L, CHOU P C, TSENG Y J. Binary droplet collision at high Weber number[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2009, 80(3): 036301.
    [12] SHEN Y, TAO J, WANG G, et al. Bioinspired fabrication of hierarchical-structured superhydrophobic surfaces to understand droplet bouncing dynamics for enhancing water repellency[J]. The Journal of Physical Chemistry C: Nanomaterials & Interfaces, 2018, 122(13): 7312-7320.
    [13] BUSSMANN M, MOSTAGHIMI J, CHANDRA S. On a three-dimensional volume tracking model of droplet impact[J]. Physics of Fluids, 1999, 11(6): 1406-1417. doi: 10.1063/1.870005
    [14] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650-659. doi: 10.1063/1.868850
    [15] RUSSO A, ICARDI M, ELSHARKAWY M, et al. Numerical simulation of droplet impact on wettability-patterned surfaces[J]. Physical Review Fluids, 2020, 5(7): 074002. doi: 10.1103/PhysRevFluids.5.074002
    [16] 何雅玲, 李庆, 王勇, 等. 格子Boltzmann方法的工程热物理应用[J]. 科学通报, 2009, 54(18): 2638-2656. (HE Yaling, LI Qing, WANG Yong, et al. Lattice Boltzmann method and its applications in engineering thermophysics[J]. Chinese Science Bulletin, 2009, 54(18): 2638-2656.(in Chinese) doi: 10.1360/csb2009-54-18-2638
    [17] 郭照立, 郑楚光, 李青, 等. 流体动力学的格子Boltzmann方法[M]. 武汉: 湖北科学技术出版社, 2002.

    GUO Zhaoli, ZHENG Chuguang, LI Qing, et al. Lattice Boltzmann Method for Hydrodynamics[M]. Wuhan: Hubei Science & Technology Press, 2002. (in Chinese)
    [18] WANG D, TAN D S, KHOO B C, et al. A lattice Boltzmann modeling of viscoelastic drops’ deformation and breakup in simple shear flows[J]. Physics of Fluids, 2020, 32(12): 123101. doi: 10.1063/5.0031352
    [19] 谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014, 35(3): 247-253. (XIE Chiyu, ZHANG Jianying, WANG Moran. Lattice Boltzmann simulation of droplet evaporation on flat solid surface[J]. Applied Mathematics and Mechanics, 2014, 35(3): 247-253.(in Chinese) doi: 10.3879/j.issn.1000-0887.2014.03.002
    [20] 许友生, 刘慈群, 俞慧丹. 多孔介质中两相驱离的格子Boltzmann模型新研究[J]. 应用数学和力学, 2002, 23(4): 353-358. (XU Yousheng, LIU Ciqun, YU Huidan. New studying of lattice Boltzmann method for two phase driven in porous media[J]. Applied Mathematics and Mechanics, 2002, 23(4): 353-358.(in Chinese) doi: 10.3321/j.issn:1000-0887.2002.04.004
    [21] GUNSTENSEN A K, ROTHMAN D H, ZALESKI S, et al. Lattice Boltzmann model of immiscible fluids[J]. Physical Review A, 1991, 43(8): 4320-4327. doi: 10.1103/PhysRevA.43.4320
    [22] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
    [23] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54(5): 5041-5052. doi: 10.1103/PhysRevE.54.5041
    [24] HE X, CHEN S, ZHANG R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability[J]. Journal of Computational Physics, 1999, 152(2): 642-663. doi: 10.1006/jcph.1999.6257
    [25] HE X, SHAN X, DOOLEN G D. Discrete Boltzmann equation model for nonideal gases[J]. Physical Review E, 1998, 57(1): R13-R16. doi: 10.1103/PhysRevE.57.R13
    [26] DALGAMONI H N, YONG X. Axisymmetric lattice Boltzmann simulation of droplet impact on solid surfaces[J]. Physical Review E, 2018, 98(1): 013102. doi: 10.1103/PhysRevE.98.013102
    [27] CHENG Z, BA Y, SUN J, et al. A numerical study of droplet dynamic behaviors on a micro-structured surface using a three dimensional color-gradient lattice Boltzmann model[J]. Soft Matter, 2018, 14(5): 837-847. doi: 10.1039/C7SM02078C
    [28] GUPTA A, KUMAR R. Simulation of droplet flows using lattice Boltzmann method[C]//ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany, 2008.
    [29] ZHAO W D, ZHANG Y, XU B. An improved pseudopotential multi-relaxation-time lattice Boltzmann model for binary droplet collision with large density ratio[J]. Fluid Dynamics Research, 2019, 51(2): 025510. doi: 10.1088/1873-7005/aae443
    [30] GONG S, CHENG P. Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows[J]. Computers & Fluids, 2012, 53: 93-104.
    [31] XIONG W, CHENG P. 3D lattice Boltzmann simulation for a saturated liquid droplet at low Ohnesorge numbers impact and breakup on a solid surface surrounded by a saturated vapor[J]. Computers & Fluids, 2018, 168: 130-143.
    [32] QIAN Y H, D’HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letter, 1992, 17(6): 479. doi: 10.1209/0295-5075/17/6/001
    [33] KUPERSHTOKH A L, MEDVEDEV D A. Lattice Boltzmann equation method in electrohydrodynamic problems[J]. Journal of Electrostatics, 2006, 64(7/9): 581-585. doi: 10.1016/j.elstat.2005.10.012
    [34] CHEN L, KANG Q, ROBINSON B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review E, 2013, 87(4): 043306. doi: 10.1103/PhysRevE.87.043306
    [35] CLANET C, BÉGUIN C, RICHARD D, et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517: 199-208. doi: 10.1017/S0022112004000904
    [36] HAGHANI R, RAHIMIAN M H. Four different types of a single drop dripping down a hole under gravity by lattice Boltzmann method[J]. Journal of Computational Applied Mechanics, 2016, 47(1): 89-98.
    [37] HAGHANI R, RAHIMIAN M H, TAGHILOU M. LBM simulation of a droplet dripping down a hole[J]. Engineering Applications of Computational Fluid Mechanics, 2013, 7(4): 461-470. doi: 10.1080/19942060.2013.11015485
    [38] YUAN X, CHAI Z, SHI B. Dynamic behavior of droplet through a confining orifice: a lattice Boltzmann study[J]. Computers & Mathematics With Applications, 2019, 77(10): 2640-2658.
    [39] FAKHARI A, RAHIMIAN M H. Simulation of falling droplet by the lattice Boltzmann method[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(7): 3046-3055. doi: 10.1016/j.cnsns.2008.10.017
  • 加载中
图(15)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  117
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 录用日期:  2021-11-30
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-12-06
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回