留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器中精密器件布局的保结构优化

蒋睿嵩 徐萌波 张帆 胡伟鹏 邓子辰

蒋睿嵩,徐萌波,张帆,胡伟鹏,邓子辰. 航天器中精密器件布局的保结构优化 [J]. 应用数学和力学,2022,43(1):26-33. doi: 10.21656/1000-0887.420095
引用本文: 蒋睿嵩,徐萌波,张帆,胡伟鹏,邓子辰. 航天器中精密器件布局的保结构优化 [J]. 应用数学和力学,2022,43(1):26-33. doi: 10.21656/1000-0887.420095
JIANG Ruisong, XU Mengbo, ZHANG Fan, HU Weipeng, DENG Zichen. Structure-Preserving Layout Optimization of Precision Devices in Spacecraft[J]. Applied Mathematics and Mechanics, 2022, 43(1): 26-33. doi: 10.21656/1000-0887.420095
Citation: JIANG Ruisong, XU Mengbo, ZHANG Fan, HU Weipeng, DENG Zichen. Structure-Preserving Layout Optimization of Precision Devices in Spacecraft[J]. Applied Mathematics and Mechanics, 2022, 43(1): 26-33. doi: 10.21656/1000-0887.420095

航天器中精密器件布局的保结构优化

doi: 10.21656/1000-0887.420095
基金项目: 国家自然科学基金(U1830122;12172281;11972284);陕西省杰出青年科学基金(2019JC-29)
详细信息
    作者简介:

    蒋睿嵩(1984—),男,副研究员,博士,硕士生导师(E-mail: jiangrs@scu.edu.cn)

    胡伟鹏(1977—),男,教授,博士,博士生导师(通讯作者. E-mail:wphu@nwpu.edu.cn)

  • 中图分类号: O39

Structure-Preserving Layout Optimization of Precision Devices in Spacecraft

  • 摘要:

    航天器中精密器件的稳定性和工作精度决定于器件布置位置的局部结构振动特性,而航天器局部振动特性又受到精密器件布局的影响。因此,航天器中精密器件的布局优化是确保其稳定高效工作的前提条件。该文建立了粘接精密器件的航天器局部柔性薄板结构的动力学模型,发展保结构分析方法模拟了薄板结构的局部振动特性。考虑精密器件形状和尺寸、散热间隙要求等布局约束条件,以各器件布局位置最大面外振动加速度加权值最小化为优化目标,对精密器件布局进行优化设计。优化结果表明:由于所提出的精密器件布局优化设计方法在模拟结构局部振动特性过程中采用了能够较为精确捕捉系统局部动力学特性的保结构分析方法,大幅提高优化效率的同时能够大幅降低器件布局位置最大面外振动加速度;通过布局优化设计,各器件布局位置最大面外振动加速度加权值减小约88.05%,这一结果对提高航天器内精密器件工作稳定性和精度具有一定的参考价值。

  • 图  1  航天器中电子元器件封装示意图[2]:(a) 三维模型;(b) 剖面图

    Figure  1.  The layout sketch of capsuled electron components in a spacecraft[2]: (a) the 3D model; (b) the profile

    图  2  精密器件与柔性封装薄板简化耦合模型

    Figure  2.  The simplified dynamic model of the flexible panel assembled with precision devices

    图  3  精密器件加速度最大值加权平均值演化过程

    Figure  3.  Evolution of the weighted average of the maximum accelerated speed of the precision device

  • [1] CARTMELL M P, MCKENZIE D J. A review of space tether research[J]. Progress in Aerospace Sciences, 2008, 44(1): 1-21. doi: 10.1016/j.paerosci.2007.08.002
    [2] LIU J F, HAO L, LI G, et al. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(6): 527-542.
    [3] CURTY CUCO A P, DE SOUSA F L, SILVA NETO A J. A multi-objective methodology for spacecraft equipment layouts[J]. Optimization and Engineering, 2015, 16(1): 165-181. doi: 10.1007/s11081-014-9252-z
    [4] RUMERMAN M L. Vibration and wave-propagation in ribbed plates[J]. Journal of the Acoustical Society of America, 1975, 57(2): 370-373. doi: 10.1121/1.380450
    [5] ORRENIUS U, FINNVEDEN S. Calculation of wave propagation in rib-stiffened plate structures[J]. Journal of Sound and Vibration, 1996, 198(2): 203-224. doi: 10.1006/jsvi.1996.0565
    [6] ICHCHOU M N, BERTHAUT J, COLLET M. Multi-mode wave propagation in ribbed plates, part Ⅰ: wavenumber-space characteristics[J]. International Journal of Solids and Structures, 2008, 45(5): 1179-1195. doi: 10.1016/j.ijsolstr.2007.09.032
    [7] ICHCHOU M N, BERTHAUT J, COLLET M. Multi-mode wave propagation in ribbed plates, part Ⅱ: predictions and comparisons[J]. International Journal of Solids and Structures, 2008, 45(5): 1196-1216. doi: 10.1016/j.ijsolstr.2007.08.020
    [8] 郑明亮, 刘洁, 邓斌. 覆冰输电导线舞动的Noether对称性和守恒量[J]. 应用数学和力学, 2021, 42(3): 275-281. (ZHENG Mingliang, LIU Jie, DENG Bin. The Noether symmetry and conserved quantity of galloping iced power transmission lines[J]. Applied Mathematics and Mechanics, 2021, 42(3): 275-281.(in Chinese)
    [9] 满淑敏, 高强, 钟万勰. 非完整约束Hamilton动力系统保结构算法[J]. 应用数学和力学, 2020, 41(6): 581-590. (MAN Shumin, GAO Qiang, ZHONG Wanxie. A structure-preserving algorithm for Hamiltonian systems with nonholonomic constraints[J]. Applied Mathematics and Mechanics, 2020, 41(6): 581-590.(in Chinese)
    [10] 刘晓梅, 周钢, 朱帅. Hamilton系统下基于相位误差的精细辛算法[J]. 应用数学和力学, 2019, 40(6): 595-608. (LIU Xiaomei, ZHOU Gang, ZHU Shuai. A highly precise symplectic direct integration method based on phase errors for Hamiltonian systems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 595-608.(in Chinese)
    [11] HU W P, WANG Z, ZHAO Y P, et al. Symmetry breaking of infinite-dimensional dynamic system[J]. Applied Mathematics Letters, 2020, 103: 106207. doi: 10.1016/j.aml.2019.106207
    [12] HU W P, DENG Z C, HAN S M, et al. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs[J]. Journal of Computational Physics, 2013, 235: 394-406. doi: 10.1016/j.jcp.2012.10.032
    [13] HU W P, HUAI Y L, XU M B, et al. Mechanoelectrical flexible hub-beam model of ionic-type solvent-free nanofluids[J]. Mechanical Systems and Signal Processing, 2021, 159: 107833. doi: 10.1016/j.ymssp.2021.107833
    [14] HU W P, ZHANG C Z, DENG Z C. Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs[J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 84: 105199. doi: 10.1016/j.cnsns.2020.105199
    [15] HU W P, YE J, DENG Z C. Internal resonance of a flexible beam in a spatial tethered system[J]. Journal of Sound and Vibration, 2020, 475: 115286. doi: 10.1016/j.jsv.2020.115286
    [16] ZHAO P F, QIN M Z. Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation[J]. Journal of Physics A: Mathematical and General, 2000, 33(18): 3613-3626. doi: 10.1088/0305-4470/33/18/308
    [17] PREISSMANN A. Propagation des intumescences dans les canaux et rivieres[C]//First Congress French Association for Computation. Grenoble, France, 1961: 433-442.
  • 加载中
图(3)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  107
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 修回日期:  2021-06-03
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回