留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同时具有logistic出生和Markov切换的随机SIRS传染病模型的动力学

何雪晴,韦煜明

何雪晴,韦煜明. 同时具有logistic出生和Markov切换的随机SIRS传染病模型的动力学[J]. 应用数学和力学, 2021, 42(12): 1327-1337. doi: 10.21656/1000-0887.420140
引用本文: 何雪晴,韦煜明. 同时具有logistic出生和Markov切换的随机SIRS传染病模型的动力学[J]. 应用数学和力学, 2021, 42(12): 1327-1337. doi: 10.21656/1000-0887.420140
HE Xueqing. Dynamics of a Class of Stochastic SIRS Infectious Disease Models With Both Logistic Birth and Markov Switching[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1327-1337. doi: 10.21656/1000-0887.420140
Citation: HE Xueqing. Dynamics of a Class of Stochastic SIRS Infectious Disease Models With Both Logistic Birth and Markov Switching[J]. Applied Mathematics and Mechanics, 2021, 42(12): 1327-1337. doi: 10.21656/1000-0887.420140

同时具有logistic出生和Markov切换的随机SIRS传染病模型的动力学

doi: 10.21656/1000-0887.420140
基金项目: 

国家自然科学基金(11961074);广西科技基地和人才专项(2018AD19211)

详细信息
    作者简介:

    何雪晴,韦煜明:何雪晴(1996—),女,硕士生(E-mail: 1283357263@qq.com);韦煜明(1974—),男,教授,博士,硕士生导师(通讯作者. E-mail: ymwei@gxnu.edu.cn).

  • 中图分类号: O175

Dynamics of a Class of Stochastic SIRS Infectious Disease Models With Both Logistic Birth and Markov Switching

Funds: 

The National Natural Science Foundation of China(11961074)

  • 摘要: 研究了一类同时具有logistic出生和Markov切换的随机SIRS传染病模型.首先通过构造合适的V函数,利用Itô公式分析了随机传染病模型全局正解的存在唯一性,继而讨论出了该模型的解存在一个遍历平稳分布的结果,以及疾病灭绝的充分条件,最后给出了数值例子来说明本文得出的结论.
  • KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115(772): 700-721.
    [2]MA Zhien, ZHOU Yicang, WU Jianhong.Modeling and Dynamics of Infectious Diseases[M]. New Jersey: World Scientific Publishing Company, 2009.
    [3]LIU W M, LEVIN S A, IWASA Y. Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J].Journal of Mathematical Biology,1986,23(2): 187-204.
    [4]CAI Y, KANG Y, BANERJEE M, et al. A stochastic SIRS epidemic model with infectious force under intervention strategies[J].Differential Equations,2015,259(12): 7463-7502.
    [5]ZHANG Juan, LI Jianquan, MA Zhien. Global analysis of SIR epidemic models with population size dependent contact rate[J].Journal of Engineering Mathematics,2004,21(2): 259-267.
    [6]MCKENDRICK A G. Applications of mathematics to medical problems[J].Proceedings of the Edinburgh Mathematical Society,1925,44: 98-130.
    [7]KEELING M J, ROHANI P.Modeling Infectious Diseases in Human and Animals[M]. New Jersey: Princeton University Press, 2008.
    [8]OKSENDAL B.Stochastic Differential Equations: an Introduction With Applications[M]. New York: Springer, 1980.
    [9]LUO Q, MAO X. Stochastic population dynamics under regime switching[J].Journal of Mathematical Analysis and Applications,2007,334(1): 69-84.
    [10]KHASMINSKII R Z, ZHU C, YIN G. Stability of regime-switching diffusions[J].Stochastic Processes and Their Applications,2007,117(8): 1037-1051.
    [11]MAO X.Stochastic Differential Equations and Applications[M]. Sawston: Horwood Publishing, 1997.
    [12]HIGHAM D J. An algorithmic introduction to numerical simulation of stochastic differential equations[J].SIAM Review,2001,43(3): 525-546.
  • 加载中
计量
  • 文章访问数:  171
  • HTML全文浏览量:  28
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-23
  • 网络出版日期:  2021-12-31

目录

    /

    返回文章
    返回