[1] |
SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1954. doi: 10.1103/PhysRevLett.53.1951
|
[2] |
孟祥敏, 佟百运, 吴玉琨. Al65Cu20Co15准晶体的力学性能[J]. 金属学报, 1994, 30(2): 61-64. (MENG Xiangmin, TONG Baiyun, WU Yukun. Mechanical properties of Al65Cu20Co15 quasicrystal[J]. Acta Metallurgica Sinica, 1994, 30(2): 61-64.(in Chinese)MENG Xiangmin, TONG Baiyun, WU Yukun. Mechanical properties of Al65Cu20Co15 quasicrystal[J]. Acta Metallurgica Sinica, 1994, 30(2): 61-64. (in Chinese))
|
[3] |
FAN T Y, LI X F, SUN Y F. A moving screw dislocation in a one-dimensional hexagonal quasicrystal[J]. Acta Physica Sinica (Overseas Edition), 1999, 8(4): 288-295. doi: 10.1088/1004-423X/8/4/007
|
[4] |
LI L F, FAN T Y. Exact solutions of two semi-infinite collinear cracks in a strip of one dimensional hexagonal quasicrystal[J]. Applied Mathematics and Computation, 2008, 196(1): 1-5. doi: 10.1016/j.amc.2007.05.028
|
[5] |
WANG X, PAN E. Analytical solutions for some defect problems in 1D hexagonal and 2D octagonal quasicrystals[J]. Pramana, 2008, 70(5): 911-933. doi: 10.1007/s12043-008-0099-8
|
[6] |
ZHOU J M, LI L H, Wang G X. Dynamic problems in a decagonal quasicrystal with a mode Ⅱ Griffith crack[J]. Chinese Journal of Engineering Mathematics, 2021, 38(1): 136-150.
|
[7] |
郭俊宏, 刘官厅. 一维六方准晶中具有不对称裂纹的圆形孔口问题的解析解[J]. 应用数学学报, 2007, 30(6): 1066-1075. (GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(6): 1066-1075.(in Chinese) doi: 10.3321/j.issn:0254-3079.2007.06.012GUO Junhong, LIU Guanting. Analytic solutions of the one-dimensional hexagonal quasicrystals about problem of a circular hole with asymmetry cracks[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(6): 1066-1075. (in Chinese)) doi: 10.3321/j.issn:0254-3079.2007.06.012
|
[8] |
郭俊宏, 刘官厅. 一维六方准晶中带双裂纹的椭圆孔口问题的解析解[J]. 应用数学和力学, 2008, 29(4): 439-446. (GUO Junhong, LIUGuanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446.(in Chinese) doi: 10.3879/j.issn.1000-0887.2008.04.006GUO Junhong, LIUGuanting. Analytic solutions of problem about an elliptic hole with two straight cracks in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Mechanics, 2008, 29(4): 439-446. (in Chinese)) doi: 10.3879/j.issn.1000-0887.2008.04.006
|
[9] |
GUO J H, LIU G T. Exact analytic solutions for an elliptic hole with asymmetric collinear cracks in a one-dimensional hexagonal quasi-crystal[J]. Chinese Physics B, 2008, 17(7): 2610-2620. doi: 10.1088/1674-1056/17/7/044
|
[10] |
GUO J H, LU Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals[J]. Applied Mathematics and Computation, 2011, 217(22): 9397-9403. doi: 10.1016/j.amc.2011.04.028
|
[11] |
LI L H, LIU G T. Interaction of a dislocation with an elliptical hole in icosahedral quasicrystals[J]. Philosophical Magazine Letters, 2013, 93(3): 142-151. doi: 10.1080/09500839.2012.752883
|
[12] |
YANG J, LI X, DING S H. Anti-plane analysis of a circular hole with three unequal cracks in one-dimensional hexagonal piezoelectric quasicrystals[J]. Chinese Journal of Engineering Mathematics, 2016, 33(2): 184-198.
|
[13] |
白巧梅, 丁生虎. 一维六方压电准晶中正六边形孔边裂纹的反平面问题[J]. 应用数学和力学, 2019, 40(10): 1071-1080. (BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080.(in Chinese)BAI Qiaomei, DING Shenghu. An anti-plane problem of cracks at edges of regular hexagonal holes in 1D Hexagonal piezoelectric quasicrystals[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1071-1080. (in Chinese))
|
[14] |
TUPHOLME G E. An antiplane shear crack moving in one-dimensional hexagonal quasicrystals[J]. International Journal of Solids and Structures, 2015, 71: 255-261. doi: 10.1016/j.ijsolstr.2015.06.027
|
[15] |
TUPHOLME G E. Row of shear cracks moving in one-dimensional hexagonal quasicrystal line materials[J]. Engineering Fracture Mechanics, 2015, 134: 451-458. doi: 10.1016/j.engfracmech.2014.07.002
|
[16] |
EL-BORGI S, ERDOGAN F, HATIRA F B. An interface crack between a functionally graded coating and a homogeneous substrate under thermo-mechanical loading[J]. Materials Science Forum, 2003, 423/425: 601-606. doi: 10.4028/www.scientific.net/MSF.423-425.601
|
[17] |
KUANG J S, WANG Y H. Analysis of interfacial cracks emanating from a hole in a bi-material plate[J]. European Journal of Mechanics A: Solids, 1999, 18(3): 465-479. doi: 10.1016/S0997-7538(99)00116-3
|
[18] |
LOBODA V, KOMAROV O, BILYI D, et al. An analytical approach to the analysis of an electrically permeable interface crack in a 1D piezoelectric quasicrystal[J]. Acta Mechanica, 2020, 231(8): 3419-3433. doi: 10.1007/s00707-020-02721-8
|
[19] |
SONG T S, HASSAN A. Dynamic anti-plane analysis for symmetrically radial cracks near a non-circular cavity in piezoelectric bi-materials[J]. Acta Mechanica, 2015, 226(7): 2089-2101. doi: 10.1007/s00707-015-1303-9
|
[20] |
AN N, SONG T S, HOU G L. Interfacial cracks near an eccentric circular hole in piezoelectric bi-materials subjected to dynamic incident anti-plane shearing[J]. AIP Advances, 2020, 10(5): 1-11.
|
[21] |
AN N, SONG T S. Dynamic fracture behavior for functionally graded piezoelectric bi-materials with interfacial cracks near a circular hole[J]. Waves in Random and Complex Media, 2021: 1-19. DOI: 10.1080/17455030.2021.1936284.
|
[22] |
ZHANG L L, WU D, XU W S, et al. Green’s functions of one-dimensional quasicrystal bi-material with piezoelectric effect[J]. Physics Letters A, 2016, 380(39): 3222-3228. doi: 10.1016/j.physleta.2016.07.043
|
[23] |
HU K Q, GAO C F, ZHENG Z, et al. Interaction of collinear interface cracks between dissimilar one-dimensional hexagonal piezoelectric quasicrystals[J]. ZAMM: Zeitschrift fur Angewandte Mathematic und Mechanik, 2021, 101(11): 1-26. doi: 10.1002/zamm.202000360
|
[24] |
HU K Q, JIN H, YANG Z J, et al. Interface crack between dissimilar one-dimensional hexagonal quasicrystals with piezoelectric effect[J]. Acta Mechanica, 2019, 230(7): 2455-2474. doi: 10.1007/s00707-019-02404-z
|
[25] |
FAN C Y, CHEN S, ZHANG Q Y, et al. Fundamental solutions and analysis of an interfacial crack in a one-dimensional hexagonal quasicrystal bi-material[J]. Mathematics and Mechanics of Solids, 2020, 25(5): 1124-1139. doi: 10.1177/1081286520903085
|
[26] |
ZHAO M H, FAN C Y, LU C S, et al. Analysis of interface cracks in one-dimensional hexagonal quasi-crystal coating under in-plane loads[J]. Engineering Fracture Mechanics, 2021, 243: 107534. doi: 10.1016/j.engfracmech.2021.107534
|
[27] |
FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Application[M]. Beijing: Science Press, 2010.
|
[28] |
MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen, Holland: Noordhoff, 1953.
|
[29] |
杨娟. 压电效应下一维六方准晶中孔边多裂纹反平面断裂问题研究[D]. 博士学位论文. 银川: 宁夏大学, 2015.YANG Juan. Study on anti-plane fracture problems of Multiple cracks emanating from a hole in one-dimensional hexagonal quasicrystals with piezoelectric effects[D]. PhD Thesis. Yinchuan: Ningxia University, 2015. (in Chinese)
|
[30] |
ZHOU Y B, LI X F. Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal[J]. Philosophical Magazine, 2018, 98(19): 1780-1798. doi: 10.1080/14786435.2018.1459057
|