留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性弹性杆波动方程的显式精确解

郭鹏 唐荣安 孙小伟 洪学仁 石玉仁

郭鹏,唐荣安,孙小伟,洪学仁,石玉仁. 非线性弹性杆波动方程的显式精确解 [J]. 应用数学和力学,2022,43(8):869-876 doi: 10.21656/1000-0887.420245
引用本文: 郭鹏,唐荣安,孙小伟,洪学仁,石玉仁. 非线性弹性杆波动方程的显式精确解 [J]. 应用数学和力学,2022,43(8):869-876 doi: 10.21656/1000-0887.420245
GUO Peng, TANG Rongan, SUN Xiaowei, HONG Xueren, SHI Yuren. Explicit Exact Solutions to the Wave Equation for Nonlinear Elastic Rods[J]. Applied Mathematics and Mechanics, 2022, 43(8): 869-876. doi: 10.21656/1000-0887.420245
Citation: GUO Peng, TANG Rongan, SUN Xiaowei, HONG Xueren, SHI Yuren. Explicit Exact Solutions to the Wave Equation for Nonlinear Elastic Rods[J]. Applied Mathematics and Mechanics, 2022, 43(8): 869-876. doi: 10.21656/1000-0887.420245

非线性弹性杆波动方程的显式精确解

doi: 10.21656/1000-0887.420245
基金项目: 国家自然科学基金(11765017;12065022;12165018);甘肃省重点人才项目( 2020RCXM100 )
详细信息
    作者简介:

    郭鹏(1978—),男,副教授,硕士生导师(通讯作者. E-mail:guopenglzjtu@126.com

  • 中图分类号: O343; O175.2

Explicit Exact Solutions to the Wave Equation for Nonlinear Elastic Rods

  • 摘要:

    应用sine-cosine方法对非线性弹性杆波动方程进行了求解,得到了该方程的一些新的周期波解和孤波解(材料常数n为不等于1的常数)。对部分结果通过数学软件得到了解的图像,获得的结果有助于非线性弹性杆中孤波存在性问题的进一步研究。

  • 图  1  方程(34)解的图像

    Figure  1.  Graphical representation of solution (34)

    图  2  方程(38)解的图像

    Figure  2.  Graphical representation of solution (38)

  • [1] 张善元, 庄蔚. 非线性弹性杆中的应变孤波[J]. 力学学报, 1988, 20(1): 58-67

    ZHANG Shanyuan, ZHUANG Wei. The strain solitary waves in a nonlinear elastic rod[J]. Acta Mechanica Sinica, 1988, 20(1): 58-67.(in Chinese)
    [2] 庄蔚, 杨桂通. 孤波在非线性弹性杆中的传播[J]. 应用数学和力学, 1986, 7(7): 571-581 doi: 10.1007/BF01895973

    ZHUANG Wei, YANG Guitong. The propagation of solitary waves in a nonlinear elastic rod[J]. Applied Mathematics and Mechanics, 1986, 7(7): 571-581.(in Chinese) doi: 10.1007/BF01895973
    [3] 张善元, 刘志芳. 有限变形弹性杆中三种非线性弥散波[J]. 应用数学和力学, 2008, 29(7): 825-832 doi: 10.1007/s10483-008-0709-2

    ZHANG Shanyuan, LIU Zhifang. Three kinds of nonlinear-dispersive waves in finite deformation elastic rods[J]. Applied Mathematics and Mechanics, 2008, 29(7): 825-832.(in Chinese) doi: 10.1007/s10483-008-0709-2
    [4] SAMSONOV A M. Evolution of a soliton in a nonlinearly elastic rod of variable cross-section[J]. Soviet Physics Doklady, 1985, 29: 586-587.
    [5] SAMSONOV A M, SOKURINSKAYA E V. Solitary longitudinal waves in an inhomogeneous nonlinear elastic rod[J]. Journal of Applied Mathematics & Mechanics, 1988, 51(3): 376-381.
    [6] DAI H H, HUO Y. Solitary waves in an inhomogeneous rod composed of a general hyperelastic material[J]. Wave Motion, 2002, 35(1): 55-69. doi: 10.1016/S0165-2125(01)00083-X
    [7] 胡伟鹏, 韩爱红, 邓子辰. 非线性弹性杆中纵波传播过程的数值模拟[J]. 计算力学学报, 2010, 27(1): 8-13 doi: 10.7511/jslx20101002

    HU Weipeng, HAN Aihong, DENG Zichen. Numerical simulation on the longitudinal wave in nonlinear elastic rod[J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 8-13.(in Chinese) doi: 10.7511/jslx20101002
    [8] DUAN W S, ZHAO J B. Solitary waves in a quadratic nonlinear elastic rod[J]. Chaos Solitons and Fractals, 2000, 11(8): 1265-1267. doi: 10.1016/S0960-0779(99)00014-4
    [9] 郭鹏, 张磊, 吕克璞. 高次非线性弹性杆纵向振动方程的摄动分析[J]. 西北师范大学学报(自然科学版), 2004, 40(1): 38-41, 44 doi: 10.16783/j.cnki.nwnuz.2004.01.011

    GUO Peng, ZHANG Lei, LÜ Kepu. Perturbation analysis for higher order equation of longitudinal oscillation of a nonlinear elastic rod[J]. Journal of Northwest Normal University (Natural Science), 2004, 40(1): 38-41, 44.(in Chinese) doi: 10.16783/j.cnki.nwnuz.2004.01.011
    [10] 吕克璞, 郭鹏, 张磊, 等. 非线性弹性杆波动方程的摄动分析[J]. 应用数学和力学, 2006, 27(9): 1079-1083 doi: 10.3321/j.issn:1000-0887.2006.09.010

    LÜ Kepu, GUO Peng, ZHANG Lei, et al. Perturbation analysis for wave equation of a nonlinear elastic rod[J]. Applied Mathematics and Mechanics, 2006, 27(9): 1079-1083.(in Chinese) doi: 10.3321/j.issn:1000-0887.2006.09.010
    [11] KABIR M M. Exact traveling wave solutions for nonlinear elastic rod equation[J]. Journal of King Saud University: Science, 2019, 31(3): 390-397. doi: 10.1016/j.jksus.2017.08.010
    [12] ÇELIK N, SEADAWY A R, ÖZKAN Y S, et al. A model of solitary waves in a nonlinear elastic circular rod: abundant different type exact solutions and conservation laws[J]. Chaos Solitons and Fractals, 2021, 143: 110486. doi: 10.1016/j.chaos.2020.110486
    [13] LI J B, ZHANG Y. Exact travelling wave solutions in a nonlinear elastic rod equation[J]. Applied Mathematics and Computation, 2008, 202(2): 504-510. doi: 10.1016/j.amc.2008.02.027
    [14] LI J B, HE T L. Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation[J]. Acta Mathematicae Applicatae Sinica (English Series), 2010, 26(2): 283-306. doi: 10.1007/s10255-008-8139-1
    [15] HIROTA R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons[J]. Physical Review Letters, 1971, 27(18): 1192-1194.
    [16] PARKES E J, DUFFY B R. An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations[J]. Computer Physics Communications, 1996, 98(3): 288-300. doi: 10.1016/0010-4655(96)00104-X
    [17] YAN C T. A simple transformation for nonlinear waves[J]. Physics Letters A, 1996, 224(1/2): 77-84.
    [18] SAKTHIVEL R, CHUN C, LEE J. New travelling wave solutions of Burgers equation with finite transport memory[J]. Zeitschrift für Naturforschung A, 2010, 65(8/9): 633-640.
    [19] ABDOU M A. The extended F-expansion method and its application for a class of nonlinear evolution equations[J]. Chaos Solitons and Fractals, 2007, 31(1): 95-104. doi: 10.1016/j.chaos.2005.09.030
    [20] SAKTHIVEL R, CHUN C. New soliton solutions of Chaffee-Infante equations using the exp-function method[J]. Zeitschrift für Naturforschung A, 2010, 65(3): 197-202.
    [21] ZAYED E M E, GEPREEL K A. The (G'/G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics[J]. Journal of Mathematical Physics, 2009, 50(1): 013502. doi: 10.1063/1.3033750
    [22] WANG M L. Exact solutions for a compound KdV-Burgers equation[J]. Physics Letters A, 1996, 213(5/6): 279-287.
    [23] FAN E G. Extended tanh-function method and its applications to nonlinear equations[J]. Physics Letters A, 2000, 277(4/5): 212-218.
    [24] 李德生, 张鸿庆. 改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解[J]. 物理学报, 2003, 52(7): 1569-1573 doi: 10.3321/j.issn:1000-3290.2003.07.003

    LI Desheng, ZHANG Hongqing. Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation[J]. Acta Physica Sinica, 2003, 52(7): 1569-1573.(in Chinese) doi: 10.3321/j.issn:1000-3290.2003.07.003
    [25] CHANG J, GAO Y X, CAI H. Generalized extended tanh-function method for traveling wave solutions of nonlinear physical equations[J]. Communications in Mathematical Research, 2014, 30(1): 60-70.
    [26] PANDIR Y, YILDIRIM A. Analytical approach for the fractional differential equations by using the extended tanh method[J]. Waves in Random and Complex Media, 2018, 28(3): 399-410. doi: 10.1080/17455030.2017.1356490
    [27] KHATER M M A, SEADAWY A R, LU D C. Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer[J]. Results in Physics, 2018, 8: 292-303. doi: 10.1016/j.rinp.2017.12.011
    [28] DAI C Q, WANG Y Y. Remarks on chaotic and fractal patterns based on variable separation solutions of (2+1)-dimensional general KdV equation[J]. Applied Mathematics Letters, 2016, 56: 10-16. doi: 10.1016/j.aml.2015.11.014
    [29] ALQURAN M, JARADAT I, BALEANU D. Shapes and dynamics of dual-mode Hirota-Satsuma coupled KdV equations: exact traveling wave solutions and analysis[J]. Chinese Journal of Physics, 2019, 58(2): 49-56.
    [30] ABDELRAHMAN M A E, SOHALY M A. On the new wave solutions to the MCH equation[J]. Indian Journal of Physics, 2019, 93(7): 903-911. doi: 10.1007/s12648-018-1354-6
    [31] HE D D. Exact solitary solution and a three-level linearly implicit conservative finite difference method for the generalized Rosenau-Kawahara-RLW equation with generalized Novikov type perturbation[J]. Nonlinear Dynamics, 2016, 85(1): 479-498. doi: 10.1007/s11071-016-2700-x
    [32] WAZWAZ A M. A sine-cosine method for handling nonlinear wave equations[J]. Mathematical and Computer Modelling, 2004, 40(5/6): 499-508.
    [33] WAZWAZ A M. Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations[J]. Physics Letters A, 2006, 352(6): 500-504. doi: 10.1016/j.physleta.2005.12.036
    [34] 张诗洁, 套格图桑. (3+1)维变系数Kudryashov-Sinelshchikov(K-S)方程的同宿呼吸波解和高阶怪波解[J]. 应用数学和力学, 2021, 42(8): 852-858.

    ZHANG Shijie, TAOGETUSANG. Homoclinic breathing wave solutions and high-order rogue wave solutions of (3+1)-dimensional variable coefficient Kudryashov-Sinelshchikov equations[J]. Applied Mathematics and Mechanics, 2021, 42(8): 852-858. (in Chinese)
    [35] 张雪, 孙峪怀. (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解[J]. 应用数学和力学, 2019, 40(12): 1345-1355.

    ZHANG Xue, SUN Yuhuai. Dynamical analysis and solutions for (3 + 1)-dimensional time fractional KdV-Zakharov-Kuznetsov equations[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355. (in Chinese)
    [36] 石兰芳, 聂子文. 应用全新G ′/(G+G ′)展开方法求解广义非线性Schrödinger方程和耦合非线性Schrödinger方程组[J]. 应用数学和力学, 2017, 38(5): 539-552

    SHI Lanfang, NIE Ziwen. Solutions to the nonlinear Schrödinger equation and coupled nonlinear Schrödinger equations with a new G ′/(G+G ′)-expansion method[J]. Applied Mathematics and Mechanics, 2017, 38(5): 539-552.(in Chinese)
  • 加载中
图(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  192
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-17
  • 修回日期:  2021-11-25
  • 网络出版日期:  2022-07-02
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回