留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拟凸函数的近似次微分及其在多目标优化问题中的应用

史小波 高英

史小波,高英. 拟凸函数的近似次微分及其在多目标优化问题中的应用 [J]. 应用数学和力学,2022,43(3):322-329 doi: 10.21656/1000-0887.420275
引用本文: 史小波,高英. 拟凸函数的近似次微分及其在多目标优化问题中的应用 [J]. 应用数学和力学,2022,43(3):322-329 doi: 10.21656/1000-0887.420275
SHI Xiaobo, GAO Ying. Properties of Quasiconvex Functions and Their Applications in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2022, 43(3): 322-329. doi: 10.21656/1000-0887.420275
Citation: SHI Xiaobo, GAO Ying. Properties of Quasiconvex Functions and Their Applications in Multiobjective Optimization Problems[J]. Applied Mathematics and Mechanics, 2022, 43(3): 322-329. doi: 10.21656/1000-0887.420275

拟凸函数的近似次微分及其在多目标优化问题中的应用

doi: 10.21656/1000-0887.420275
基金项目: 国家自然科学基金(11771064;11991024);重庆市科学技术研究重点项目(KJZDK202001104);重庆市高校创新研究群体项目(CXQT20014);重庆市留学人员回国创业创新支持计划(cx2020096)
详细信息
    作者简介:

    史小波(1997—),女,硕士生(E-mail:sxb792663@163.com)

    高英(1982—),女,教授,博士,硕士生导师(通讯作者. E-mail:gaoying@cqnu.edu.cn)

  • 中图分类号: O221.6

Properties of Quasiconvex Functions and Their Applications in Multiobjective Optimization Problems

  • 摘要:

    针对拟凸函数提出一类新的近似次微分,研究其性质,并将近似次微分应用到拟凸多目标优化问题近似解的刻画中。首先,对已有的近似次微分进行改进,得到拟凸函数新的近似次微分,并给出其与已有次微分之间的关系及一系列性质。随后,利用新的近似次微分给出拟凸多目标优化问题近似有效解、近似真有效解的最优性条件。

  • [1] MANGASARIAN O L. Pseudo function[J]. Journal of the Society for Industrial and Applied Mathematics, 1965, 3(2): 23-32.
    [2] DUCA D I, LUPA L. On the E-epigraph of an E-convex function[J]. Journal of Optimization Theory and Applications, 2006, 129(2): 341-348. doi: 10.1007/s10957-006-9059-y
    [3] 王海英, 符祖峰. D-η-E-半预不变凸映射和D-η-E-半预不变真拟凸映射[J]. 应用数学和力学, 2019, 40(3): 111-122. (WANG Haiying, FU Zufeng. D-η-E-semi-preinvex mapping and D-η-E-properly semi-prequasi-invex mapping[J]. Applied Mathematics and Mechanics, 2019, 40(3): 111-122.(in Chinese)
    [4] 刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. (LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601.(in Chinese)
    [5] DE FINETTI B. Sulle stratificazioni convesse[J]. Annali di Matematica Pura ed Applicata, 1949, 30(1): 173-183. doi: 10.1007/BF02415006
    [6] FENCHEL W. Convex Cones, Sets, and Functions[M]. Princeton University, 1953.
    [7] 杨新民. 拟凸函数的某些性质[J]. 工程数学学报, 1993, 10(1): 51-56. (YANG Xinmin. Some properties of quasiconvex functions[J]. Journal of Engineering Mathematics, 1993, 10(1): 51-56.(in Chinese)
    [8] YANG X M, LIU S Y. Technical note three kind of generalized convexity[J]. Journal of Optimization Theory and Applications, 1995, 86(2): 501-513. doi: 10.1007/BF02192092
    [9] 杨新民, 戎卫东. 广义凸性及其应用[M]. 北京: 科学出版社, 2016.

    YANG Xinmin, RONG Weidong. Generalized Convexity and Its Application[M]. Beijing: Science Press, 2016. (in Chinese)
    [10] 高岩. 非光滑优化[M]. 北京: 科学出版社, 2008.

    GAO Yan. Nonsmooth Optimization[M]. Beijing: Science Press, 2008. (in Chinese)
    [11] GREENBERG H P, PIERSKALLA W P. Quasi-conjugate functions and surrogate duality[J]. Cahiers du Centre d’Etude de Recherche Operationelle, 1973, 15: 437-448.
    [12] PENOT J P, ZALINESCU C. Elements of quasiconvex subdifferential calculus[J]. Journal of Convex Analysis, 2000, 7(7): 243-269.
    [13] GUTIÉRREZ D J M. Infragradients and directions of decrease[J]. Rev Real Acad Cienc Exact Fís Natur Madrid, 1984, 78(4): 523-532.
    [14] PLASRTIA F. Lower subdifferentiable functions and their minimization by cutting planes[J]. Journal of Optimization Theory and Applications, 1985, 46(1): 37-53. doi: 10.1007/BF00938758
    [15] PENOT J P. What is quasiconvex analysis?[J]. Optimization, 2000, 47(1/2): 35-110.
    [16] PENOT J P. Characterization of solution sets of quasiconvex programs[J]. Journal of Optimization Theory and Applications, 2003, 117(3): 627-636. doi: 10.1023/A:1023905907248
    [17] NGUYEN T H L, PENOT J P. Optimality conditions for quasiconvex programs[J]. SIAM Journal on Optimization, 2006, 17(2): 500-510. doi: 10.1137/040621843
    [18] SUZUKI S, KUROIWA D. Optimality conditions and the basic constraint qualification for quasiconvex programming[J]. Nonlinear Analysis Theory Methods and Applications, 2011, 74(4): 1279-1285. doi: 10.1016/j.na.2010.09.066
    [19] KHANH P Q, QUYEN H T, YAO J C. Optimality conditions under relaxed quasiconvexity assumptions using star and adjusted subdifferentials[J]. European Journal of Operational Research, 2011, 212(2): 235-241. doi: 10.1016/j.ejor.2011.01.024
    [20] 陈瑞婷, 徐智会, 高英. 拟凸多目标优化问题近似解的最优性条件[J]. 运筹学学报, 2019, 23(1): 35-44. (CHEN Ruiting, XU Zhihui, GAO Ying. The optimality conditions of approximate solutions for quasiconvex multiobjective optimization problem[J]. Operations Research Transactions, 2019, 23(1): 35-44.(in Chinese)
    [21] 岳瑞雪, 高英. 多目标优化问题(ε, $ \bar \varepsilon $)-拟近似真有效解的非线性标量化[J]. 数学的实践与认识, 2015, 45(21): 282-289. (YUE Ruixue, GAO Ying. Nonlinear scalarizations for (ε, $ \bar \varepsilon $)-approximate quasi solutions of multiobjective optimization problems[J]. Mathematics in Practice and Theory, 2015, 45(21): 282-289.(in Chinese)
  • 加载中
计量
  • 文章访问数:  606
  • HTML全文浏览量:  236
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-09
  • 录用日期:  2021-10-28
  • 修回日期:  2021-09-23
  • 网络出版日期:  2022-02-12
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回