留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究

丁洁莹 薛峰 苟晓凡

丁洁莹,薛峰,苟晓凡. 考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究 [J]. 应用数学和力学,2022,43(6):631-638 doi: 10.21656/1000-0887.420353
引用本文: 丁洁莹,薛峰,苟晓凡. 考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究 [J]. 应用数学和力学,2022,43(6):631-638 doi: 10.21656/1000-0887.420353
DING Jieying, XUE Feng, GOU Xiaofan. A Study on Interfacial Fracture Behaviors of Superconducting Thin Film/Substrate Structures in View of Effects of Flux Flow[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420353
Citation: DING Jieying, XUE Feng, GOU Xiaofan. A Study on Interfacial Fracture Behaviors of Superconducting Thin Film/Substrate Structures in View of Effects of Flux Flow[J]. Applied Mathematics and Mechanics. doi: 10.21656/1000-0887.420353

考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究

doi: 10.21656/1000-0887.420353
基金项目: 国家自然科学基金(12072101)
详细信息
    作者简介:

    丁洁莹(1995—),女,硕士生(E-mail:jieyingding@hhu.edu.cn

    薛峰(1985—),男,副教授(通讯作者. E-mail:xuefeng12@hhu.edu.cn

    苟晓凡(1971—),男,教授(通讯作者. E-mail:xfgou@hhu.edu.cn

  • 中图分类号: O343; O346

A Study on Interfacial Fracture Behaviors of Superconducting Thin Film/Substrate Structures in View of Effects of Flux Flow

  • 摘要: 超导薄膜是一种采用化学涂层制备而成的多层薄膜结构,作为性能优越的导电功能结构材料,其载流能力与结构完整性直接相关。在超导薄膜制备过程中,超导层与金属基底之间的界面裂纹很难避免。因此,在载流运行过程中,由于外磁场的存在,这类界面裂纹的强度问题成为关键。为此,该文针对超导薄膜结构,以磁通量子穿透薄膜理论和线弹性断裂理论为基础,建立了研究超导层与基底界面裂纹强度问题的解析模型。深入分析了外加磁场作用下界面裂纹强度问题,得到了超导磁通流动对裂纹尖端应力场和能量释放率的影响。结果表明:磁通流动速度越大,界面裂纹尖端处应力越大且能量释放率越大,这将导致界面更容易发生裂纹破坏。该文所得结果有助于分析相关的界面裂纹问题。
  • 图  1  计算模型示意图

    Figure  1.  The schematic drawing for calculation

    图  2  薄膜与基底结构界面中心处裂纹计算模型示意图

    Figure  2.  The calculation model of a crack at the center of the interface between the thin film and the substrate

    图  3  截面A的电流密度分布 (磁场上升阶段)

    Figure  3.  The current density distribution in cross-section A (the increasing field)

    图  4  截面A的磁通密度分布 (磁场上升阶段)

    Figure  4.  The flux density distribution in cross-section A (the increasing field)

    图  5  Ⅰ型应力强度因子KI/K0与外加磁场的关系(磁场上升阶段)

    Figure  5.  The relationship between mode Ⅰ stress intensity factor KI/K0 and the magnetic field (the increasing field)

    图  6  Ⅱ型应力强度因子K/K0与外加磁场的关系(磁场上升阶段)

    Figure  6.  The relationship between mode Ⅱ stress intensity factor K/K0 and the magnetic field (the increasing field)

    图  7  截面A的电流密度分布 (磁场下降阶段)

    Figure  7.  The current density distribution in cross-section A (the decreasing field)

    图  8  截面A的磁通密度分布 (磁场下降阶段)

    Figure  8.  The flux density distribution in cross-section A (the decreasing field)

    图  9  Ⅰ型应力强度因子KI/K0与外加磁场的关系(磁场下降阶段)

    Figure  9.  The relationship between mode Ⅰ stress intensity factor KI/K0 and the magnetic field (the decreasing field)

    图  10  Ⅱ型应力强度因子K/K0与外加磁场的关系(磁场下降阶段)

    Figure  10.  The relationship between mode Ⅱ stress intensity factor K/K0 and the magnetic field (the decreasing field)

    图  11  磁场上升阶段和磁场下降阶段能量释放率与外加磁场的关系:(a) ${B_{\rm{a}}} \leqslant 2.0{B_{\rm{p}}}$;(b) ${B_{\rm{a}}} \leqslant {\text{1}}.2{B_{\rm{p}}},{\text{ }}G/{G_0} \leqslant 0.04$

    Figure  11.  The relationship between the energy release rate and the external magnetic field in increasing and decreasing fields:(a) ${B_{\rm{a}}} \leqslant 2.0{B_{\rm{p}}}$;(b) ${B_{\rm{a}}} \leqslant $$ {\text{1}}.2{B_{\rm{p}}},\;{\text{ }}G/{G_0} \leqslant 0.04$

  • [1] ZHANG Z X, XUE F, GOU X F. Interaction of two parallel cracks in REBCO bulk superconductors under applied magnetic field[J]. Chinese Physics Letters, 2016, 33(7): 077401. doi: 10.1088/0256-307X/33/7/077401
    [2] 高配峰. 高温超导复合带材力学行为及变形对临界特性影响的研究[D]. 博士学位论文. 兰州: 兰州大学, 2017.

    GAO Peifeng. Mechanical behaviors and influence of deformation on critical properties for high temperature superconducting composite tapes[D]. PhD Thesis. Lanzhou: Lanzhou University, 2017. (in Chinese)
    [3] MBAM S O, GOU X F. Interface crack growth rate and fatigue life of multilayer-coated conductor tapes[J]. Engineering Fracture Mechanics, 2020, 228: 106910. doi: 10.1016/j.engfracmech.2020.106910
    [4] YONG H D, ZHOU Y H. Interface crack between superconducting film and substrate[J]. Journal of Applied Physics, 2011, 110(6): 063924. doi: 10.1063/1.3634019
    [5] HUTCHINSON J W, SUO Z. Mixed mode cracking in layered materials[J]. Advances in Applied Mechanics, 1991, 29: 63-191.
    [6] SUO Z, HUTCHINSON J W. Interface crack between two elastic layers[J]. International Journal of Fracture, 1990, 43(1): 1-18. doi: 10.1007/BF00018123
    [7] 李聪, 牛忠荣, 胡宗军, 等. 求解双材料裂纹结构全域应力场的扩展边界元法[J]. 应用数学和力学, 2019, 40(8): 926-937. (LI Cong, NIU Zhongrong, HU Zongjun, et al. Computation of total stress fields for cracked bi-material structures with the extended boundary element method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937.(in Chinese)

    LI Cong, NIU Zhongrong, HU Zongjun, et al. Computation of total stress fields for cracked bi-material structures with the extended boundary element method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937. (in Chinese))
    [8] 张厚源. 考虑层间界面失效行为的REBCO超导层合带材裂纹扩展数值研究[D]. 博士学位论文. 兰州: 兰州大学, 2020.

    ZHANG Houyuan. Numerical study on crack propagation of REBCO superconducting laminated tapes considering the behavior of interfacial[D]. PhD Thesis. Lanzhou: Lanzhou University, 2020. (in Chinese)
    [9] MA P, SU R K L, FENG W J. Crack tip enrichment functions for extended finite element analysis of two-dimensional interface cracks in anisotropic magneto-electro-elastic bimaterials[J]. Engineering Fracture Mechanics, 2016, 161: 21-39. doi: 10.1016/j.engfracmech.2016.04.038
    [10] GU Y, ZHANG C Z. Novel special crack-tip elements for interface crack analysis by an efficient boundary element method[J]. Engineering Fracture Mechanics, 2020, 239: 107302. doi: 10.1016/j.engfracmech.2020.107302
    [11] GRUSS S, FUCHS G, KRABBES G, et al. Superconducting bulk magnets: very high trapped fields and cracking[J]. Applied Physics Letters, 2001, 79(19): 3131-3133. doi: 10.1063/1.1413502
    [12] ZELDOV E, CLEM J R, MCELFRESH M, et al. Magnetization and transport currents in thin super conducting films[J]. Physical Review B, 1994, 49(14): 9802-9822. doi: 10.1103/PhysRevB.49.9802
    [13] BRANDT E H, INDENBOM M V, FORKL A. Type-Ⅱ superconducting strip in perpendicular magnetic field[J]. Europhysics Letters, 1993, 22(9): 599-610.
    [14] MCDONALD J, CLEM J R. Theory of flux penetration into thin films with field-dependent critical current[J]. Physical Review B, 1996, 53(13): 8643-8650. doi: 10.1103/PhysRevB.53.8643
    [15] JOHANSEN T H. Flux-pinning-induced stress and strain in superconductors: long rectangular slab[J]. Physical Review B, 1999, 60(17): 11187-11190.
    [16] XUE F, YONG H D, ZHOU Y H. Effect of flux creep and viscous flux flow on flux-pinning-induced stress and magnetostriction in a long rectangular slab superconductor[J]. Journal of Applied Physics, 2010, 108(10): 103910. doi: 10.1063/1.3506704
    [17] ZHAO Y F, XIONG K. Magnetization and stress in superconducting film under electromagnetic force with viscous flux flow[J]. Modern Physics Letters B, 2020, 34(26): 2050283. doi: 10.1142/S0217984920502838
    [18] 章立源, 张金龙, 崔广霁. 超导物理学[M]. 北京: 电子工业出版社, 1995.

    ZHANG Liyuan, ZHANG Jinlong, CUI Guangji. Superconductivity Physics[M]. Beijing: Publishing House of Electronics Industry, 1995. (in Chinese)
    [19] YANG Y, XIAO L Y, LI X H. Impact of viscous flux flow on the stress in long rectangular slab superconductors[J]. Journal of Applied Physics, 2010, 107(2): 023910. doi: 10.1063/1.3284080
    [20] EVANS A G, HUTCHINSON J W. The thermomechanical integrity of thin films and multilayers[J]. Acta Metallurgica et Materialia, 1995, 43(7): 2507-2530. doi: 10.1016/0956-7151(94)00444-M
  • 加载中
图(11)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  54
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-23
  • 录用日期:  2021-12-07
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-05-13

目录

    /

    返回文章
    返回