留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用

鲁双 李东波 陈晶博 席勃

鲁双, 李东波, 陈晶博, 席勃. 考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用[J]. 应用数学和力学, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
引用本文: 鲁双, 李东波, 陈晶博, 席勃. 考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用[J]. 应用数学和力学, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
LU Shuang, LI Dongbo, CHEN Jingbo, XI Bo. The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017
Citation: LU Shuang, LI Dongbo, CHEN Jingbo, XI Bo. The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects[J]. Applied Mathematics and Mechanics, 2023, 44(9): 1122-1133. doi: 10.21656/1000-0887.440017

考虑挠曲电与温度效应的Mindlin-Medick板理论及其应用

doi: 10.21656/1000-0887.440017
基金项目: 

国家自然科学基金项目 51878547

国家自然科学基金项目 51641809

国家自然科学基金项目 52378195

详细信息
    作者简介:

    鲁双(1998—),女,硕士生(E-mail: lushuang@xauat.edu.cn)

    通讯作者:

    李东波(1982—),男,教授,博士,博士生导师(通讯作者. E-mail: ldb@xauat.edu.cn)

  • 中图分类号: O34

The Mindlin-Medick Plate Theory and Its Application Under Flexoelectricity and Temperature Effects

  • 摘要: 基于Hamilton变分原理,推导了挠曲电纳米板的二维场方程和边界条件,然后将本构关系和几何关系代入场方程中,得到了相应的控制方程. 研究了非均匀温度变化引起的挠曲电纳米板面内拉伸变形、厚度伸缩变形、对称厚度-剪切变形及其耦合的挠曲电极化. 位移场和电势场用双重Fourier级数解求解. 结果表明,所有场都对温度载荷敏感,这为利用温度场控制挠曲电纳米板的力学和电学行为提供了前景. 对比分析了温度场和机械场对位移场的影响,拓展了考虑挠曲电效应和温度效应的Mindlin-Medick板结构分析理论,其可为微纳米尺度器件的结构设计提供参考.
  • 图  1  挠曲电纳米板模型及其坐标系

    Figure  1.  The flexoelectric nanoplate model and its coordinate system

    图  2  挠曲电纳米矩形板的边界

    Figure  2.  The boundary of a flexoelectric nanorectangular plate

    图  3  加载区域

    Figure  3.  The loading area

    图  4  比较θ(0)f3(1)对位移场和电势场的影响

    Figure  4.  Comparison of the effects of θ(0) and f3(1) on the displacement field and potential field

    图  5  θ(0)f3(1)对厚度伸缩变形u3(1)的协同影响

    Figure  5.  Synergistic effects of θ(0) and f3(1) on thickness-stretch deformation u3(1)

  • [1] YANG J, CHEN Z, HU Y. An exact analysis of a rectangular plate piezoelectric generator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 54(1): 190-195.
    [2] ERTURK A, INMAN D J. Piezoelectric Energy Harvesting[M]. New York: Wiley, 2011.
    [3] 李海涛, 秦卫阳. 双稳态压电能量获取系统的分岔混沌阈值[J]. 应用数学和力学, 2014, 35(6): 652-662. doi: 10.3879/j.issn.1000-0887.2014.06.007

    LI Haitao, QIN Weiyang. Bifurcation and chaos thresholds of bistable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2014, 35(6): 652-662. (in Chinese) doi: 10.3879/j.issn.1000-0887.2014.06.007
    [4] 李海涛, 丁虎, 陈立群, 等. 三稳态能量收集系统的同宿分岔及混沌动力学分析[J]. 应用数学和力学, 2020, 41(12): 1311-1322. doi: 10.21656/1000-0887.410164

    LI Haitao, DING Hu, CHEN Liqun, et al. Homoclinic bifurcations and chaos thresholds of tristable piezoelectric vibration energy harvesting systems[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1311-1322. (in Chinese) doi: 10.21656/1000-0887.410164
    [5] ZHOU P, ZHENG Z, WANG B, et al. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric[J]. Nano Energy, 2022, 99: 107400. doi: 10.1016/j.nanoen.2022.107400
    [6] TAN Y, YANG K, WANG B, et al. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application[J]. Nano Research, 2021, 14(11): 3969-3976. doi: 10.1007/s12274-021-3322-2
    [7] YANG J S, ZHANG X. Analysis of a thickness-shear piezoelectric transformer[J]. International Journal of Applied Electromagnetics and Mechanics, 2005, 21(2): 131-141. doi: 10.3233/JAE-2005-676
    [8] 周强, 张志纯, 龙志林, 等. 考虑表面效应的压电纳米梁的振动研究[J]. 应用数学和力学, 2020, 41(8): 853-865. doi: 10.21656/1000-0887.400330

    ZHOU Qiang, ZHANG Zhichu, LONG Zhilin, et al. Vibration of piezoelectric nanobeams with surface effects[J]. Applied Mathematics and Mechanics, 2020, 41(8): 853-865. (in Chinese) doi: 10.21656/1000-0887.400330
    [9] QU Y, JIN F, YANG J. Buckling of flexoelectric semiconductor beams[J]. Acta Mechanica, 2021, 232(7): 2623-2633. doi: 10.1007/s00707-021-02960-3
    [10] MAJDOUB M S, SHARMA P, CAGIN T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect[J]. Physical Review B, 2008, 77(12): 125424. doi: 10.1103/PhysRevB.77.125424
    [11] 梁旭, 尚红星, 邓谦, 等. 固体电介质中的挠曲电效应[J]. 固体力学学报, 2021, 42(1): 1-32. doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.053

    LIANG Xu, SHANG Hongxing, DENG Qian, et al. Flexoelectric effect in solid dielectric[J]. Chinese Journal of Solid Mechanics, 2021, 42(1): 1-32. (in Chinese) doi: 10.19636/j.cnki.cjsm42-1250/o3.2020.053
    [12] MINDLIN R D. Polarization gradient in elastic dielectrics[J]. International Journal of Solids and Structures, 1968, 4(6): 637-642. doi: 10.1016/0020-7683(68)90079-6
    [13] MAJDOUB M S, SHARMA P, CAGIN T. Dramatic enhancement in energy harvesting for a narrow range of dimensions in piezoelectric nanostructures[J]. Physical Review B, 2008, 78(12): 121407. doi: 10.1103/PhysRevB.78.121407
    [14] HU S, SHEN S. Electric field gradient theory with surface effect for nano-dielectrics[J]. Computers, Materials & Continua (CMC), 2009, 13(1): 63.
    [15] HU S, SHEN S. Variational principles and governing equations in nano-dielectrics with the flexoelectric effect[J]. Science China: Physics, Mechanics and Astronomy, 2010, 53(8): 1497-1504. doi: 10.1007/s11433-010-4039-5
    [16] SHEN S, HU S. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001
    [17] QU Y, JIN F, YANG J. Bending of a flexoelectric semiconductor plate[J]. Acta Mechanica Solida Sinica, 2022, 35(3): 434-445. doi: 10.1007/s10338-021-00296-y
    [18] MA W, CROSS L E. Strain-gradient-induced electric polarization in lead zirconate titanate ceramics[J]. Applied Physics Letters, 2003, 82(19): 3293-3295. doi: 10.1063/1.1570517
    [19] LI D B, YAN J Q, CHEN J B, et al. Magnetically-induced flexoelectric effects in the second-order extension of a composite fiber with piezomagnetic and flexoelectric layers[J]. International Journal of Applied Mechanics, 2021, 13(7): 2150083. doi: 10.1142/S1758825121500836
    [20] 梁超, 张春利. 恒磁场作用下压磁/压电半导体复合圆柱壳的耦合响应分析[J]. 固体力学学报, 2020, 41(3): 206-215. https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003003.htm

    LIANG Chao, ZHANG Chunli. Analysis of multi-field coupling responses of piezomagnetic/piezoelectric semiconductor cylindrical shell under a constant magnetic field[J]. Chinese Journal of Solid Mechanics, 2020, 41(3): 206-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GTLX202003003.htm
    [21] GHOBADI A, BENI Y T, GOLESTANIAN H. Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field[J]. Archive of Applied Mechanics, 2020, 90(9): 2025-2070. doi: 10.1007/s00419-020-01708-0
    [22] 蒋建平, 李东旭. 热载荷下压电复合板有限元建模与形变控制[J]. 力学学报, 2007, 39(4): 503-509. doi: 10.3321/j.issn:0459-1879.2007.04.011

    JIANG Jianping, LI Dongxu. Finite element modelling and shape control for piezoelectric composite plates under thermal load[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 503-509. (in Chinese) doi: 10.3321/j.issn:0459-1879.2007.04.011
    [23] HADJESFANDIARI A R. Size-dependent thermoelasticity[J]. Latin American Journal of Solids and Structures, 2014, 11: 1679-1708. doi: 10.1590/S1679-78252014000900010
    [24] SAMANI M S E, BENI Y T. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam[J]. Materials Research Express, 2018, 5(8): 085018.
    [25] CHU L, DUI G, ZHENG Y. Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory[J]. European Journal of Mechanics A: Solids, 2020, 82: 103999.
    [26] QU Y, JIN F, YANG J. Temperature effects on mobile charges in thermopiezoelectric semiconductor plates[J]. International Journal of Applied Mechanics, 2021, 13(3): 2150037.
    [27] MINDLIN R D, MEDICK M A. Extensional vibrations of elastic plates[J]. Journal of Applied Mechanics, 1959, 26(4): 561-569.
    [28] QU Y, JIN F, YANG J. Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate[J]. Acta Mechanica, 2021, 232(11): 4533-4543.
    [29] MINDLIN R D. Mathematical theory of vibrations of elastic plates[C]// 10 th Annual Symposium on Frequency Control. Asbury Park, NJ, USA, 1956.
    [30] QU Y, JIN F, YANG J. Torsion of a flexoelectric semiconductor rod with a rectangular cross section[J]. Archive of Applied Mechanics, 2021, 91(5): 2027-2038.
    [31] QU Y, LI P, JIN F. A general dynamic model based on Mindlin's high-frequency theory and the microstructure effect[J]. Acta Mechanica, 2020, 231(9): 3847-3869.
    [32] WANG L, LIU S, FENG X, et al. Flexoelectronics of centrosymmetric semiconductors[J]. Nature Nanotechnology, 2020, 15(8): 661-667.
    [33] GAO X L, MALL S. Variational solution for a cracked mosaic model of woven fabric composites[J]. International Journal of Solids and Structures, 2001, 38(5): 855-874.
  • 加载中
图(5)
计量
  • 文章访问数:  650
  • HTML全文浏览量:  182
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-20
  • 修回日期:  2023-05-05
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回