留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

着角与攻角联合作用下薄芳纶层合板抗平头弹侵彻性能

季海波 王昕 苏金波 李振 王鹏飞 巨圆圆 卢天健

季海波, 王昕, 苏金波, 李振, 王鹏飞, 巨圆圆, 卢天健. 着角与攻角联合作用下薄芳纶层合板抗平头弹侵彻性能[J]. 应用数学和力学, 2024, 45(2): 184-196. doi: 10.21656/1000-0887.440084
引用本文: 季海波, 王昕, 苏金波, 李振, 王鹏飞, 巨圆圆, 卢天健. 着角与攻角联合作用下薄芳纶层合板抗平头弹侵彻性能[J]. 应用数学和力学, 2024, 45(2): 184-196. doi: 10.21656/1000-0887.440084
JI Haibo, WANG Xin, SU Jinbo, LI Zhen, WANG Pengfei, JU Yuanyuan, LU Tianjian. Synergistic Effects of Impact and Attack Angles on Anti-Penetration Performances of Thin Aramid Laminates[J]. Applied Mathematics and Mechanics, 2024, 45(2): 184-196. doi: 10.21656/1000-0887.440084
Citation: JI Haibo, WANG Xin, SU Jinbo, LI Zhen, WANG Pengfei, JU Yuanyuan, LU Tianjian. Synergistic Effects of Impact and Attack Angles on Anti-Penetration Performances of Thin Aramid Laminates[J]. Applied Mathematics and Mechanics, 2024, 45(2): 184-196. doi: 10.21656/1000-0887.440084

着角与攻角联合作用下薄芳纶层合板抗平头弹侵彻性能

doi: 10.21656/1000-0887.440084
(我刊编委卢天健来稿)
基金项目: 

国家自然科学基金 11972185

国家自然科学基金 12032010

国家重点实验室开发基金 MCMS-I-0222K01

详细信息
    作者简介:

    季海波(1998—),男,硕士生(E-mail: hbji_01@163.com)

    通讯作者:

    王昕(1994—),男,博士(通讯作者. E-mail: wxtj_9449@163.com)

    卢天健(1964—),男,教授,博士(通讯作者. E-mail: tjlu@nuaa.edu.cn)

  • 中图分类号: O347

Synergistic Effects of Impact and Attack Angles on Anti-Penetration Performances of Thin Aramid Laminates

(Contributed by LU Tianjian, M. AMM Editorial Board)
  • 摘要: 为探究着角和攻角对薄芳纶层合板抗平头弹侵彻性能的影响,建立了三维有限元仿真模型,对4 mm厚芳纶层合板在着角单独作用下以及着/攻角联合作用下的弹道行为进行了计算. 通过弹丸的剩余速度、靶板的极限弹道速度及穿孔能量阈值反映了芳纶层合板的抗侵彻性能,分析了其在不同工况下的变形与破坏机理. 结果表明:薄芳纶层合板的弹道极限速度随初始着角的增加先减小后增大;随着入射速度的增大和初始着角的减小,着角改变量和攻角改变量均有减小的趋势;对于固定的着角,负攻角不利于子弹侵彻,正攻角有利于侵彻.
    1)  (我刊编委卢天健来稿)
  • 图  1  带着角(φ)与攻角(α)的非理想侵彻

    Figure  1.  Schematic of the non-ideal penetration with an impact angle (φ) and an attack angle (α)

    图  2  有限元模型

    Figure  2.  The finite element model

    图  3  初始着角的影响

    Figure  3.  Effects of the initial impact angle

    图  4  子弹初始着角φ0对姿态角改变量的影响

    Figure  4.  Effects of initial impact angle φ0 on the changes of attitude angles

    图  5  不同入射速度下子弹初始着角φ0对其轨迹的影响

    Figure  5.  Effects of initial impact angle φ0 on the bullet trajectories at different impact velocities

    图  6  平头弹带初始着角冲击芳纶层合板的σx分布(vi=180 m/s)

    Figure  6.  Distributions of σx for a flat-nosed bullet impacting an aramid laminate with an initial impact angle (vi=180 m/s)

    图  7  平头弹带初始着角冲击芳纶层合板的接触力时程曲线(vi=180 m/s)

    Figure  7.  Contact force time histories for a flat-nosed bullet impacting an aramid laminate with an initial impact angle (vi=180 m/s)

    图  8  初始着角为10°时初始攻角的影响

    Figure  8.  Effects of the initial attack angle at a fixed initial attack angle of 10°

    图  9  初始着角为20°时初始攻角的影响

    Figure  9.  Effects of the initial attack angle at a fixed initial attack angle of 20°

    图  10  初始着角为30°时初始攻角的影响

    Figure  10.  Effects of the initial attack angle at a fixed initial attack angle of 30°

    图  11  平头弹带初始着角和初始攻角冲击芳纶层合板的σx分布(vi=180 m/s)

    Figure  11.  Distributions of σx for a flat-nosed bullet impacting an aramid laminate with an initial impact angle and an attack angle (vi=180 m/s)

    图  12  平头弹带初始着角和初始攻角冲击芳纶层合板的接触力时程曲线(vi=180 m/s)

    Figure  12.  Contact force time histories for a flat-nosed bullet impacting an aramid laminate with an initial impact angle and an attack angle (vi=180 m/s)

    表  1  45钢的材料参数[35]

    Table  1.   Material parameters of the 45 steel[35]

    ρ/(kg·m-3) E/GPa A/MPa B/MPa n C m $\dot{\varepsilon}_0 /\mathrm{s}^{-1}$
    7 800 200 506 320 0.28 0.064 1.06 1
    Tm/K Cr/(J·kg-1·K-1) D1 D2 D3 D4 D5
    1 795 469 0.10 0.76 1.57 0.005 -0.84
    下载: 导出CSV

    表  2  芳纶层合板的材料参数[12]

    Table  2.   Material parameters of the aramid laminate[12]

    ρ/(kg·m-3) Ex/GPa Ey/GPa Ez/GPa Gxy/GPa Gyz/GPa Gzx/GPa
    1 191 7.618 11.05 6 2.123 5.43 5.43
    Xt/MPa Yt/MPa Xc/MPa Yc/MPa Sc/MPa Sn/MPa Ss/MPa
    400 530 94 113 67 62.8 22.9
    下载: 导出CSV
  • [1] RUBIO I, RODRÍGUEZ-MILLÁN M, MARCO M, et al. Ballistic performance of aramid composite combat helmet for protection against small projectiles[J]. Composite Structures, 2019, 226: 111153. doi: 10.1016/j.compstruct.2019.111153
    [2] FAN T, SUN Z, ZHANG Y, et al. Novel Kevlar fabric composite for multifunctional soft body armor[J]. Composites Part B: Engineering, 2022, 242: 110106. doi: 10.1016/j.compositesb.2022.110106
    [3] PRATOMO A N, SANTOSA S P, GUNAWAN L, et al. Design optimization and structural integrity simulation of aluminum foam sandwich construction for armored vehicle protection[J]. Composite Structures, 2021, 276: 114461. doi: 10.1016/j.compstruct.2021.114461
    [4] 王晓强, 朱锡. 舰船用钢的抗弹道冲击性能研究进展[J]. 中国造船, 2010, 51(1): 227-236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htm

    WANG Xiaoqiang, ZHU Xi. Review on ballistic impact resistance of ship building steel[J]. Shipbuilding of China, 2010, 51(1): 227-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201001030.htm
    [5] 李营, 张磊, 赵鹏铎, 等. 舰船抗反舰导弹技术研究进展与发展路径[J]. 中国造船, 2016, 57(4): 186-196. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201604021.htm

    LI Ying, ZHANG Lei, ZHAO Pengze, et al. A review on research progress and developing routes of warship anti-explosion under anti-ship missile explosion[J]. Shipbuilding of China, 2016, 57(4): 186-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201604021.htm
    [6] 辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势[J]. 战术导弹技术, 2016, 6(6): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201606021.htm

    XIN Chunliang, WANG Junlin, XUE Zaiqing, et al. Review on status and development of antiship missile warhead[J]. Tactical Missile Technology, 2016, 6(6): 105-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201606021.htm
    [7] 李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展[J]. 中国造船, 2018, 59(1): 237-250. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201801023.htm

    LI Dian, HOU Hailiang, ZHU Xi, et al. Review on ballistic impact resistance of ship armor protection structure[J]. Shipbuilding of China, 2018, 59(1): 237-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC201801023.htm
    [8] RIEDEL W, NAHME H, WHITE D M, et al. Hypervelocity impact damage prediction in composites, part Ⅱ: experimental investigations and simulations[J]. International Journal of Impact Engineering, 2006, 33(1/12): 670-680.
    [9] 王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究[J]. 工程塑料应用, 2014, 42(11): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201411035.htm

    WANG Xiaoqiang, GUO Zhongren, GONG Ping, et al. Application research of bulletproof composites in warship protection[J]. Engineering Plastics Application, 2014, 42(11): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ACSN201411035.htm
    [10] 虢忠仁, 金子明, 钟蔚华, 等. 芳纶复合材料抗钨球性能研究[J]. 化工新型材料, 2009, 37(1): 3. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901021.htm

    GUO Zhongren, JIN Ziming, ZHONG Weihua, et al. The research on aramid composite materials defending tungsten alloy sphere[J]. New Chemical Materials, 2009, 37(1): 3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC200901021.htm
    [11] BANDARU A K, CHAVAN V V, AHMAD S, et al. Ballistic impact response of Kevlar reinforced thermoplastic composite armors[J]. International Journal of Impact Engineering, 2016, 89: 1-13. doi: 10.1016/j.ijimpeng.2015.10.014
    [12] NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study[J]. International Journal of Impact Engineering, 2019, 132: 103307. doi: 10.1016/j.ijimpeng.2019.05.021
    [13] GUO G, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles[J]. International Journal of Impact Engineering, 2021, 157: 104000. doi: 10.1016/j.ijimpeng.2021.104000
    [14] 王元博, 王肖钧, 胡秀章, 等. Kevlar层合材料抗弹性能研究[J]. 工程力学, 2005, 22(3): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200503014.htm

    WANG Yuanbo, WANG Xiaojun, HU Xiuzhang, et al. Experimental study of ballistic resistance of Kevlar laminates[J]. Engineering Mechanics, 2005, 22(3): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200503014.htm
    [15] MANES A, BRESCIANI L M, GIGLIO M. Ballistic performance of multi-layered fabric composite plates impacted by different 7.62 mm calibre projectiles[J]. Procedia Engineering, 2014, 88: 208-215. doi: 10.1016/j.proeng.2014.11.146
    [16] MILLÁN M R, MORENO C E, MIGUÉLEZ H, et al. Numerical analysis of the ballistic behaviour of Kevlar composite under impact of double-nosed stepped cylindrical projectiles[J]. Journal of Reinforced Plastics & Composites, 2016, 35(2): 124-137.
    [17] SIKARWAR R S, VELMURUGAN R, GUPTA N K. Ballistic performance of Kevlar/epoxy composite laminates[J]. Proceedings of the Indian National Science Academy, 2013, 79(4): 789. doi: 10.16943/ptinsa/2013/v79i4/48001
    [18] GOLDSMITH W. Non-ideal projectile impact on targets[J]. International Journal of Impact Engineering, 1999, 22(2/3): 95-395.
    [19] 张明. Kevlar129/EVA复合材料抗弹性能数值模拟研究[D]. 太原: 中北大学, 2016.

    ZHANG Ming. Numerical simulation research of ballistic performance of Kevlar129/EVA composites[D]. Taiyuan: North University of China, 2016. (in Chinese)
    [20] 季海波, 王昕, 赵振宇, 等. 带攻角平头弹侵彻不同厚度芳纶层合板的数值模拟研究[J]. 爆炸与冲击, 2023, 43(6): 134-151. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202306009.htm

    JI Haibo, WANG Xin, ZHAO Zhenyu, et al. Penetration of flat-nosed projectile with attack angle across aramid laminates having varying thickness: numerical simulation[J]. Explosion and Shock Waves, 2023, 43(6): 134-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202306009.htm
    [21] 汤雪志, 王志军, 董理赢, 等. 弹丸斜撞击间隔靶板的数值模拟[J]. 兵器装备工程学报, 2019, 40(6): 47-50. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906011.htm

    TANG Xuezhi, WANG Zhijun, DONG Liying, et al. Numerical simulation analysis of projectile oblique impact target plate[J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 47-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201906011.htm
    [22] 张昆, 罗刚, 谢伟. 低碳金属板对带攻角侵彻弹体的动态响应仿真分析[J]. 计算机辅助工程, 2019, 28(2): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201902013.htm

    ZHANG Kun, LUO Gang, XIE Wei. Simulation analysis on dynamic response of penetration projectile with attack angle against low carbon metal plate[J]. Computer Aided Engineering, 2019, 28(2): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201902013.htm
    [23] 刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究[J]. 兵工学报, 2019, 40(9): 1797-1803. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201909005.htm

    LIU Jiancheng, ZHANG Leilei, XU Kun, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment[J]. Acta Armamentarii, 2019, 40(9): 1797-1803. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO201909005.htm
    [24] 郭松林, 高世桥, 李泽章, 等. 弹引系统攻角侵彻混凝土仿真与试验研究[J]. 兵器装备工程学报, 2022, 43(1): 135-139. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202201021.htm

    GUO Songlin, GAO Shiqiao, LI Zezhang, et al. Experiment and simulation of projectile obliquely penetrating into concrete target at attack angle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 135-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI202201021.htm
    [25] 李鹏程, 张先锋, 刘闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究[J]. 爆炸与冲击, 2022, 42(11): 113302. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202211007.htm

    LI Pengcheng, ZHANG Xianfeng, LIU Chuang, et al. Study on the influence of pitch and trajectory angle on penetration of projectiles into thin concrete targets[J]. Explosion and Shock Waves, 2022, 42(11): 113302. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202211007.htm
    [26] 姚熊亮, 王治, 叶墡君, 等. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型[J]. 爆炸与冲击, 2021, 41(3): 033301. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202103014.htm

    YAO Xiongliang, WANG Zhi, YE Shanjun, et al. A simplified theoretical model for attack angle change of a hemisphericallynosed projectile while penetrating the stiffener of a ship plate frame[J]. Explosion and Shock Waves, 2021, 41(3): 033301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202103014.htm
    [27] MO G L, LIU J, MA Q W, et al. Influence of impact velocity and impact attack angle of bullets on damage of human tissue surrogate-ballistic gelatin[J]. Chinese Journal of Traumatology, 2022, 25(4): 209-217. doi: 10.1016/j.cjtee.2022.03.004
    [28] 吴世永, 李慧, 宿德志. 具有攻角的钨合金弹侵彻运动靶板的数值模拟研究[J]. 兵器装备工程学报, 2019, 40(7): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201907005.htm

    WU Shiyong, LI Hui, SU Dezhi. Numerical simulation study of tungsten alloy projectile penetrating moving target with angle of attack[J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 20-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CUXI201907005.htm
    [29] DONG Y L, ZI F, YANG L H, et al. Research on anti-penetration performance of composite armor of steel/composite materials[J]. Mechanics of Advanced Materials and Structures, 2022, 29(22): 7035-7050.
    [30] BORVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles[J]. International Journal of Impact Engineering, 2009, 36(7): 948-964. doi: 10.1016/j.ijimpeng.2008.12.003
    [31] GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model[J]. International Journal of Impact Engineering, 2015, 76: 207-220. doi: 10.1016/j.ijimpeng.2014.10.004
    [32] GREGORI D, SCAZZOSI R, NUNES S G, et al. Analytical and numerical modelling of high-velocity impact on multilayer alumina/aramid fiber composite ballistic shields: improvement in modelling approaches[J]. Composites Part B: Engineering, 2020, 187: 107830. doi: 10.1016/j.compositesb.2020.107830
    [33] DZ A, YING S A, LI C A, et al. Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design (1980-2015), 2014, 54: 315-322.
    [34] 柳占立, 初东阳, 王涛, 等. 爆炸和冲击载荷下金属材料及结构的动态失效仿真[J]. 应用数学和力学, 2021, 42(1): 1-14. doi: 10.21656/1000-0887.410262

    LIU Zhanli, CHU Dongyang, WANG Tao, et al. Dynamic failure simulation of metal materials and structures under blast and impact loading[J]. Applied Mathematics and Mechanics, 2021, 42(1): 1-14. (in Chinese) doi: 10.21656/1000-0887.410262
    [35] 陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析[J]. 爆炸与冲击, 2007, 27(5): 390-397. ( https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200705002.htm

    CHEN Gang, CHEN Xiaowei, CHEN Zhongfu. Simulations of A3 steel blunt projectiles impacting 45 steel plates[J]. Explosion and Shock Waves, 2007, 27(5): 390-397. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200705002.htm
    [36] MA D Y, MANES A, AMICO S C, et al. Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach[J]. Composite Structures, 2019, 216: 187-200. doi: 10.1016/j.compstruct.2019.02.102
    [37] HALLQUIST J. LS-DYNA keyword user's manual, version: 970[Z]. 2003.
    [38] LAMBERT J, JONAS G H. Towards standardization in terminal ballistics testing: velocity representation[J]. 1976. DOI: 10.21236/ada021389.
    [39] JENA P, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration[J]. International Journal of Impact Engineering, 2010, 37(5): 489-501. doi: 10.1016/j.ijimpeng.2009.11.009
    [40] 高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析[J]. 兵工学报, 2014, 35(S2): 33-39. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2007.htm

    GAO Xudong, LI Qingming. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle[J].Acta Armamentarii, 2014, 35(S2): 33-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2014S2007.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  111
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-12-29
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回