留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑不同破坏形式下隧道锚承载力及破坏阶段研究

杨国俊 吕明航 唐光武 田骐玮 杜永峰

杨国俊, 吕明航, 唐光武, 田骐玮, 杜永峰. 考虑不同破坏形式下隧道锚承载力及破坏阶段研究[J]. 应用数学和力学, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146
引用本文: 杨国俊, 吕明航, 唐光武, 田骐玮, 杜永峰. 考虑不同破坏形式下隧道锚承载力及破坏阶段研究[J]. 应用数学和力学, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146
YANG Guojun, LÜ Minghang, TANG Guangwu, TIAN Qiwei, DU Yongfeng. Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes[J]. Applied Mathematics and Mechanics, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146
Citation: YANG Guojun, LÜ Minghang, TANG Guangwu, TIAN Qiwei, DU Yongfeng. Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes[J]. Applied Mathematics and Mechanics, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146

考虑不同破坏形式下隧道锚承载力及破坏阶段研究

doi: 10.21656/1000-0887.440146
(我刊编委唐光武来稿)
基金项目: 

国家自然科学基金 51808274

国家自然科学基金 52168042

甘肃省科技计划 22JR5RA250

中国博士后科学基金 2019M653897XB

详细信息
    通讯作者:

    杨国俊(1988—),男,副教授,博士(通讯作者. E-mail: yanggj403@163.com)

  • 中图分类号: U448.25

Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes

(Contributed by TANG Guangwu, M. AMM Editorial Board)
  • 摘要: 现有研究多以锚岩接触面出现塑性区域或应力峰值点转移作为达到极限状态的判别标准,但不同工程地质情况会导致隧道锚(TTA)破裂面线形存在较大差异,很难准确推导出隧道锚的极限承载力. 为了进一步探求隧道锚在拉拔荷载下的工作过程,得到更加明确的隧道锚极限承载力的表达形式,采用幂指数函数形式表征倒锥形破坏破裂面的线形,基于Mindlin应力解与峰值剪应力控制理论得到界面破坏应力分布形式,推导了界面破坏与倒锥台破坏形式下的承载能力公式;采用国内5座悬索桥隧道锚承载力进行算例验证,同时分析研究了不同参数对隧道锚极限承载力的影响. 研究表明:两种破坏形式下,承载力的主要来源为破裂面的黏结力,占总承载力的50%以上,承载力均随着长度与内聚力的增加而线性增加;承载力随着倾斜角的增加而增加,但增长速度减慢,界面破坏形式下出现先增加后减小的现象. 对比以往试验以及数值模拟结果,与该文推导结果基本一致,分析公式计算结果和位移增长曲线,发现隧道锚工作过程明显呈现3个阶段,最终破坏形式为界面破坏和倒锥形破坏两种破坏模式的结合.
    1)  (我刊编委唐光武来稿)
  • 图  1  倒锥台破坏示意图

    Figure  1.  Schematic diagram of inverse cone failure

    图  2  微段受力图示

    Figure  2.  Micro-segment stress diagrams

    图  3  承载力随N值变化曲线

    Figure  3.  The bearing capacity curve with the value of N

    图  4  破坏范围随参数N值变化示意图

    Figure  4.  The damage range changing with parameter N

    图  5  考虑附加应力下的隧道锚受力图

    Figure  5.  The anchorage force diagram with additional stress

    图  6  考虑自重应力下的锚碇受力图

    Figure  6.  The anchorage force diagram with self-weight stress

    图  7  隧道锚轴力分布室内试验值[22]与理论值对比图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Comparison between test values[22] and theoretical values of TTA axial force distributions

    图  8  倒锥形破坏形式下计算结果与现有文献结果对比

    Figure  8.  Comparison of calculation results and existing literature results under the inverse cone failure mode

    图  9  界面破坏形式下计算结果与现有文献结果对比

    Figure  9.  Comparison of calculated results with existing literature results under the interface failure mode

    图  10  界面破坏各部分承载力占比

    Figure  10.  Bearing capacity ratios of the interfacial failure

    图  11  界面破坏各部分承载力占比

    Figure  11.  Bearing capacity ratios of the interfacial failure

    图  12  界面破坏各部分承载力占比

    Figure  12.  Bearing capacity ratios of the interfacial failure

    图  13  不同荷载作用下隧道锚围岩塑性区分布图

    Figure  13.  Distributions of the plastic zone of anchorage surrounding rock under different loads

    图  14  不同缆力下锚碇轴向位移

    Figure  14.  Displacements of the anchorage under different cable forces

    图  15  隧道锚承载阶段图

    Figure  15.  The bearing stage diagram of the TTA

    表  1  界面破坏形式极限承载力计算表

    Table  1.   Calculation results of ultimate bearing capacities of the interface failure mode

    bridge name parameter calculation result
    γ/(kN·m-3) φ/(°) a/(°) L/m c/kP H/m K β/(°) PU/kN this paper ref. [7-8, 17, 26]
    Sidu River Bridge 24 24 5 40 1 100 70 0.5 35 2 678 100 11.9 9
    Wujiagang Bridge 25 27 4.5 45 800 90 0.5 40 3 007 100 13.73 16
    Puli Bridge 25 37 5 35 1 100 60 0.5 42 2 337 000 23.09 20
    Jinsha River Bridge 25 27 5.5 45 400 95 0.5 35 2 585 500 8.32 7.38
    下载: 导出CSV

    表  2  倒锥台破坏形式极限承载力计算表

    Table  2.   Calculation results of ultimate bearing capacities for the inverse cone failure mode

    bridge name parameter calculation result
    γ/(kN·m-3) φ/(°) a/m L/m c/kP H/m β/(°) K PU/kN this paper ref. [7-8, 12, 17]
    Lüzhijiang Bridge 22 30 9.8 40 900 70 35 1 4 023 000 24.5 23
    Wujiagang Bridge 25 27 10.1 45 800 90 40 1.15 5 256 402 24.1 16
    Puli Bridge 25 37 8 35 1 100 60 42 1 4 404 200 43.5 44
    Jinsha River Bridge 25 27 11.6 45 400 95 35 0.97 5 681 200 18 16.83
    下载: 导出CSV
  • [1] 刘新荣, 韩亚峰, 景瑞, 等. 隧道锚承载特性、变形破坏特征及典型案例分析[J]. 地下空间与工程学报, 2019, 15(6): 1780-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906025.htm

    LIU Xinrong, HAN Yafeng, JING Rui, et al. Bearing characteristics, deformation failure characteristics and typical case studies of tunnel-type anchorage[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1780-1791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906025.htm
    [2] 余美万, 张奇华, 喻正富, 等. 基于夹持效应的普立特大桥隧道锚现场模型试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 261-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm

    YU Meiwan, ZHANG Qihua, YU Zhengfu, et al. Field model experiment on clamping effect of tunnel-type anchorage at Puli Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 261-270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm
    [3] 廖明进, 王全才, 袁从华, 等. 基于楔形效应的隧道锚抗拔承载能力研究[J]. 岩土力学, 2016, 37(1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm

    LIAO Mingjin, WANG Quancai, YUAN Conghua, et al. Research on the pull-out capacity of the tunnel-type anchorage based on wedge-effect[J]. Rock and Soil Mechanics, 2016, 37(1): 185-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm
    [4] 王东英, 尹小涛, 杨光华. 悬索桥隧道式锚碇夹持效应的试验研究[J]. 岩土力学, 2021, 42(4): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104013.htm

    WANG Dongying, YIN Xiaotao, YANG Guanghua. Experimental study on the clamping effect of suspension bridge tunnel-type anchorage[J]. Rock and Soil Mechanics, 2020, 42(4): 1003-1011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104013.htm
    [5] HAN Yafeng, LIU Xinrong, LI Dongliang, et al. Model test on the bearing behaviors of the tunnel-type anchorage in soft rock with underlying weak interlayers[J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 1023-1040. doi: 10.1007/s10064-019-01564-5
    [6] 汤华, 熊晓荣, 邓琴, 等. 普立特大桥隧道式锚碇围岩系统的变形规律及破坏机制[J]. 上海交通大学学报, 2015, 49(7): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507008.htm

    TANG Hua, XIONG Xiaorong, DENG Qin, et al. Deformation law and failed mechanism of anchorage-surrounding rock system of Puli Extra-Large Bridge[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 961-967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507008.htm
    [7] 江南, 冯君. 铁路悬索桥隧道式锚碇受载破裂力学行为研究[J]. 岩石力学与工程学报, 2018, 37(7): 1659-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm

    JIANG Nan, FENG Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm
    [8] 张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究: 抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm

    ZHANG Qihua, YU Meiwan, YU Zhengfu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm
    [9] 余美万, 张奇华, 高利萍, 等. 金东大桥隧道锚现场模型试验及承载能力分析[J]. 岩土工程学报, 2021, 43(2): 338-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102019.htm

    YU Meiwan, ZHANG Qihua, GAO Liping, et al. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102019.htm
    [10] 庞正江, 孙豪杰, 赖其波, 等. 1∶10隧道锚缩尺模型的变形及应力特性[J]. 岩石力学与工程学报, 2015, 34(S2): 3972-3978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2042.htm

    PANG Zhengjiang, SUN Haojie, LAI Qibo, et al. Deformation and stress characteristics of tunnel-type anchorage model on scale 1∶10[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3972-3978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2042.htm
    [11] 李栋梁, 刘新荣, 李俊江, 等. 浅埋软岩隧道式锚碇稳定性原位模型试验研究[J]. 岩土工程学报, 2017, 39(11): 2078-2087. doi: 10.11779/CJGE201711016

    LI Dongliang, LIU Xinrong, LI Junjiang, et al. Stability of shallowly buried soft rock tunnel anchorage by in-situ model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087. (in Chinese) doi: 10.11779/CJGE201711016
    [12] 王东英, 汤华, 尹小涛, 等. 隧道式锚碇承载机制的室内模型试验探究[J]. 岩石力学与工程学报, 2019, 38(S1): 2690-2703. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1010.htm

    WANG Dongying, TANG Hua, YIN Xiaotao, et al. Study on the bearing mechanism of tunnel-type anchorage based on laboratory model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2690-2073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1010.htm
    [13] JIANG Nan, WANG Duo, FENG Jun, et al. Bearing mechanism of a tunnel-type anchorage in a railway suspension bridge[J]. Journal of Mountain Science, 2021, 18(8): 2143-2158. doi: 10.1007/s11629-020-6162-8
    [14] 江南, 黄林, 冯君, 等. 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm

    JIANG Nan, HUANG Lin, FENG Jun, et al. Research on design and calculation method of tunnel-type anchorage of railway suspension bridge[J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm
    [15] 张奇华, 李玉婕, 余美万, 等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学, 2017, 38(3): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm

    ZHANG Qihua, LI Yujie, YU Meiwan, et al. Preliminary study of pullout mechanisms and computational model of pullout force for rocks surrounding tunnel-type anchorage[J]. Rock and Soil Mechanics, 2017, 38(3): 810-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm
    [16] ZHANG Qihua, LI Yujie, YU Meiwan, et al. Study of the rock foundation stability of the Aizhai Suspension Bridge over a deep canyon area in China[J]. Engineering Geology, 2015, 198 : 65-77. doi: 10.1016/j.enggeo.2015.09.012
    [17] 施高萍, 祝江鸿, 杨建辉. 单位圆外域-洞室外域共形映射下任意开挖断面隧洞围岩应力解析解[J]. 应用数学和力学, 2020, 41(5): 541-556. doi: 10.21656/1000-0887.400220

    SHI Gaoping, ZHU Jianghong, YANG Jianhui. Analytical stress solutions around tunnels with arbitrary-excavation cross sections based on conformal mapping from a unit circle to the tunnel exterior[J]. Applied Mathematics and Mechanics, 2020, 41(5): 541-556. (in Chinese) doi: 10.21656/1000-0887.400220
    [18] 崔建斌, 姬安召, 熊贵明. 基于Schwarz-Christoffel变换的圆形隧道围岩应力分布特征研究[J]. 应用数学和力学, 2019, 40(10): 1089-1098. doi: 10.21656/1000-0887.390326

    CUI Jianbin, JI Anzhao, XIONG Guiming. Research on surrounding rock stress distributions for circular tunnels based on the Schwarz-Christoffel transformation[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1089-1098. (in Chinese) doi: 10.21656/1000-0887.390326
    [19] LIU Xinrong, HAN Yafeng, YU Chuntao, et al. Reliability assessment on stability of tunnel-type anchorages[J]. Computers and Geotechnics, 2020, 125: 103661. doi: 10.1016/j.compgeo.2020.103661
    [20] 王东英, 汤华, 尹小涛, 等. 基于简化力学模型的隧道锚极限承载力估值公式[J]. 岩土力学, 2020, 41(10): 3405-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010027.htm

    WANG Dongying, TANG Hua, YIN Xiaotao, et al. Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model[J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010027.htm
    [21] 汪海滨, 高波, 朱栓来, 等. 四渡河特大桥隧道式锚碇数值模拟[J]. 中国公路学报, 2006, 19(6): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606013.htm

    WANG Haibin, GAO Bo, ZHU Shuanlai, et al. Numerical simulation on tunnel anchorage of Siduhe Super-long Bridge[J]. China Journal of Highway and Transport, 2006, 19(6): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606013.htm
    [22] LI Y, LUO R, ZHANG Q, et al. Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage[J]. Geomechanics and Engineering, 2017, 12(1): 139-160. doi: 10.12989/gae.2017.12.1.139
    [23] 王中豪, 郭喜峰, 杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报, 2021, 56(3): 534-540. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103011.htm

    WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103011.htm
    [24] 江南. 铁路悬索桥隧道式锚碇承载机理及计算方法研究[D]. 博士学位论文. 成都: 西南交通大学, 2014.

    JIANG Nan. Research on bearing mechanism of tunnel anchorage of railway suspension bridge and its calculation method[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [25] 薛江红, 何赞航, 夏飞, 等. 基于偶应力理论微纳米Mindlin板的尺度效应分析[J]. 应用数学和力学, 2022, 43(7): 740-751. doi: 10.21656/1000-0887.420171

    XUE Jianghong, HE Zanhang, XIA Fei, et al. Size-dependent effects of micro-nano Mindlin plates based on the couple stress theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 740-751. (in Chinese) doi: 10.21656/1000-0887.420171
    [26] 朱玉, 廖朝华, 彭元诚, 等. 大跨径悬索桥隧道锚设计及结构性能评价[J]. 桥梁建设, 2005(2): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS20050200C.htm

    ZHU Yu, LIAO Chaohua, PENG Yuancheng, et al. Design and structural capacity assessment of tunnel-type anchorage for long-span suspension bridge[J]. Bridge Construction, 2005(2): 44-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS20050200C.htm
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  66
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-12
  • 修回日期:  2023-08-04
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回