留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究

崔静 岳茂昌 牛书鑫 杨广峰

崔静, 岳茂昌, 牛书鑫, 杨广峰. 水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究[J]. 应用数学和力学, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183
引用本文: 崔静, 岳茂昌, 牛书鑫, 杨广峰. 水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究[J]. 应用数学和力学, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183
CUI Jing, YUE Maochang, NIU Shuxin, YANG Guangfeng. Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films[J]. Applied Mathematics and Mechanics, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183
Citation: CUI Jing, YUE Maochang, NIU Shuxin, YANG Guangfeng. Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films[J]. Applied Mathematics and Mechanics, 2024, 45(3): 337-347. doi: 10.21656/1000-0887.440183

水滴撞击倾斜非Newton除冰液液膜动力学行为特性数值研究

doi: 10.21656/1000-0887.440183
基金项目: 

国家自然科学基金(面上项目) 52076212

天津市研究生科研创新项目 2022SKYZ359

详细信息
    作者简介:

    崔静(1982—),女,教授,博士(E-mail: j_cui@cauc.edu.cn)

    通讯作者:

    杨广峰(1978—),男,讲师,博士(通讯作者. E-mail: gfyang@cauc.edu.cn)

  • 中图分类号: O359;O373

Numerical Study on Dynamic Behavior Characteristics of Water Droplets Hitting Inclined Non-Newtonian Deicing Liquid Films

  • 摘要: 为了探究降雨天气下水滴撞击除冰液液膜后引发的非Newton动力学行为,耦合相界面控制方程及组分输运方程,构建了多相、多组分、多体系耦合作用的液滴撞击非Newton液膜的动力学行为模型.开展了水滴撞击除冰液液膜非稳态演化行为特性数值研究,以实验结果验证并修正了模型.此外,进一步分析了除冰液的剪切稀化特性和斜面坡度对撞击过程的影响机制.研究结果表明:液滴撞击倾斜液膜后会产生非对称的液冠,而除冰液非Newton特性引发的黏度差异进一步导致撞击后的非对称运动;在液冠的形成过程中,除冰液被带离液膜,与水分的稀释效应共同降低了液膜的黏度;坡度的增加限制了水滴在液膜上游的作用范围,促进了下游液冠的生长进而加快了除冰液的脱离,因此液膜在下游的黏度显著降低.
  • 图  1  物理模型

    Figure  1.  The physical model

    图  2  液滴撞击倾斜液膜

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  The droplet striking the tilting liquid film

    图  3  t*=3.22时流体内部的参数分布

    Figure  3.  Parameter distributions inside the fluid at t*=3.22

    图  4  剪切速率(左)和黏度(右)

    Figure  4.  Shear rates (left) and viscosities (right)

    图  5  中心点8 mm范围内液膜的黏度变化

    Figure  5.  Changes in viscosities of the liquid film within 8 mm of the center point

    图  6  水滴撞击不同坡度的倾斜液膜的动态过程

    Figure  6.  Dynamic processes of water droplets hitting inclined liquid films of different slopes

    图  7  不同坡度下液冠半径随时间的变化

    Figure  7.  Changes of liquid crown radii over time for different slopes

    表  1  材料物性参数

    Table  1.   Physical parameters of materials

    parameter deicing fluid water
    density ρ/(kg/m3) 1 150 998
    viscosity μ/(Pa·s) 0.5~3 0.001
    surface tension σ/(mN/m) 48.4 78.2
    consistency k 14.741 -
    power law n 0.517 5 -
    下载: 导出CSV
  • [1] 陆林杰. 飞机结冰影响与除防冰技术综述[J]. 科技创新与应用, 2020(16): 136-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202016057.htm

    LU Linjie. Review of aircraft icing effects and de-icing technology[J]. Science and Technology Innovation and Application, 2020(16): 136-138. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202016057.htm
    [2] COSSALI G E, MARENGO M, COGHE A, et al. The role of time in single drop splash on thin film[J]. Experiments in Fluids, 2004, 36(6): 888-900. doi: 10.1007/s00348-003-0772-0
    [3] PAN K L, HUNG C Y. Droplet impact upon a wet surface with varied fluid and surface properties[J]. Journal of Colloid and Interface Science, 2010, 352(1): 186-193. doi: 10.1016/j.jcis.2010.08.033
    [4] 钟凯, 秦静, 裴毅强, 等. 单液滴撞击薄液膜后冠状结构的破碎过程[J]. 中南大学学报(自然科学版), 2022, 53(4): 1497-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204033.htm

    ZHONG Kai, QIN Jing, PEI Yiqiang, et al. Breakage process of coronal structure after a single droplet hits a thin liquid film[J]. Journal of Central South University(Natural Science Edition), 2022, 53(4): 1497-1505. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202204033.htm
    [5] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究[J]. 物理学报, 2010, 59(4): 2601-2609. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201004067.htm

    GUO Jiahong, DAI Shiqiang, DAI Qin. Experimental study on the process of droplet impact on liquid film[J]. Acta Physica Sinica, 2010, 59(4): 2601-2609. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201004067.htm
    [6] OKAWA T, KUBO K, KAWAI K, et al. Experiments on splashing thresholds during single-drop impact onto a quiescent liquid film[J]. Experimental Thermal and Fluid Science, 2021, 121: 110279. doi: 10.1016/j.expthermflusci.2020.110279
    [7] LU L, PEI Y, QIN J, et al. Impingement behaviour of single ethanol droplet on a liquid film of glycerol solution[J]. Fuel, 2020, 276: 117820. doi: 10.1016/j.fuel.2020.117820
    [8] PENG C, XU X, LIANG X. Numerical investigation on crown behavior and energy evolution of droplet impinging onto thin film[J]. International Communications in Heat and Mass Transfer, 2020, 114: 104532. doi: 10.1016/j.icheatmasstransfer.2020.104532
    [9] 刘浩, 娄钦, 黄一帆. T型微通道内液滴在幂律流体中运动机理的格子Boltzmann方法研究[J]. 应用数学和力学, 2022, 43(3): 255-271. doi: 10.21656/1000-0887.420182

    LIU Hao, LOU Qin, HUANG Yifan. Lattice Boltzmann method for the motion mechanism of droplets in T-shaped microchannels in power-law fluids[J]. Applied Mathematics and Mechanics, 2022, 43(3): 255-271. (in Chinese)) doi: 10.21656/1000-0887.420182
    [10] PASSANDIDEH-FARD M, KHARMIANI S F. Simulation of a single droplet impact onto a thin liquid film using the lattice Boltzmann method[J]. Journal of Molecular Liquids, 2016, 222: 1172-1182. doi: 10.1016/j.molliq.2016.07.092
    [11] YUAN H, LI J, HE X, et al. Study of droplet splashing on a liquid film with a tunable surface tension pseudopotential lattice Boltzmann method[J]. AIP Advances, 2020, 10(2): 25209. doi: 10.1063/1.5141869
    [12] 尹强, 齐晓霓, 梁伟. 二元海水液滴对心碰撞过程数值模拟[J]. 应用数学和力学, 2020, 41(3): 268-279. doi: 10.21656/1000-0887.400196

    YIN Qiang, QI Xiaoni, LIANG Wei. Numerical simulation of binary seawater droplet collision process[J]. Applied Mathematics and Mechanics, 2020, 41(3): 268-279. (in Chinese)) doi: 10.21656/1000-0887.400196
    [13] SANJAY V, LAKSHMAN S, CHANTELOT P, et al. Drop impact on viscous liquid films[J]. Journal of Fluid Mechanics, 2023, 958: A25. doi: 10.1017/jfm.2023.13
    [14] FUJISAWA N, KAWABATA H, TANAKA M. Observing the impact force and low-speed droplet behavior of wet surfaces with very-thin liquid films[J]. Experimental Thermal and Fluid Science, 2023, 144: 110836. doi: 10.1016/j.expthermflusci.2022.110836
    [15] 马小晶, 周鑫, 吐松江·卡日, 等. 乙醇液滴撞击高温壁面蒸发过程的模拟预测研究[J]. 应用数学和力学, 2023, 44(5): 535-542. doi: 10.21656/1000-0887.430139

    MA Xiaojing, ZHOU Xin, TUSONGJIANG Kari, et al. Simulation and prediction of the evaporation process of ethanol droplets impacting high-temperature walls[J]. Applied Mathematics and Mechanics, 2023, 44(5): 535-542. (in Chinese)) doi: 10.21656/1000-0887.430139
    [16] HUH H K, JUNG S, SEO K W, et al. Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces[J]. Microfluidics and Nanofluidics, 2015, 18(5/6): 1221-1232.
    [17] SAÏDI A, MARTIN C, MAGNIN A. Influence of yield stress on the fluid droplet impact control[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(11/12): 596-606.
    [18] BOYER F, SANDOVAL-NAVA E, SNOEIJER J H, et al. Drop impact of shear thickening liquids[J]. Physical Review Fluids, 2016, 1(1): 013901. doi: 10.1103/PhysRevFluids.1.013901
    [19] AN S M, LEE S Y. Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces[J]. Experimental Thermal and Fluid Science, 2012, 38: 140-148. doi: 10.1016/j.expthermflusci.2011.12.003
    [20] 王强, 彭华乔, 吴海涛, 等. 飞机除冰液流变特性研究[J]. 应用化工, 2016, 45(4): 732-736. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201604033.htm

    WANG Qiang, PENG Huaqiao, WU Haitao, et al. Study on rheological properties of aircraft de-icing fluid[J]. Applied Chemical Industry, 2016, 45(4): 732-736. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201604033.htm
    [21] 张亚博, 赵芯, 于新华, 等. 飞机除冰/防冰液的流变特性研究[J]. 应用化工, 2015, 44(3): 419-422. https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201503008.htm

    ZHANG Yabo, ZHAO Xin, YU Xinhua, et al. Rheological properties of aircraft de-icing/anti-icing fluids[J]. Applied Chemical Industry, 2015, 44(3): 419-422. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201503008.htm
    [22] 沈学峰, 曹宇, 王军锋, 等. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究[J]. 物理学报, 2020, 69(6): 158-167. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202006017.htm

    SHEN Xuefeng, CAO Yu, WANG Junfeng, et al. Numerical simulation of shear-thinned droplets impacting different wettability walls[J]. Acta Physica Sinica, 2020, 69(6): 158-167. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202006017.htm
    [23] 朱呈祥, 吴猛, 陈荣钱, 等. 剪切稀化非牛顿射流撞击液膜破碎直接数值模拟[J]. 航空学报, 2018, 39(5): 92-100. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805008.htm

    ZHU Chengxiang, WU Meng, CHEN Rongqian, et al. Direct numerical simulation of shear breakup formed by two impinging jets with non-Newtonian shear thinning properties[J]. Journal of Aeronautics and Astronautics, 2018, 39(5): 92-100. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201805008.htm
    [24] 郑所生, 黄瑶, 邹鲲, 等. 刮膜蒸发器内非牛顿流体流场特性数值模拟[J]. 物理学报, 2022, 71(5): 197-208. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202205019.htm

    ZHENG Suosheng, HUANG Yao, ZOU Kun, et al. Numerical simulation of flow field characteristics of non-Newtonian fluid in scraper film evaporator[J]. Acta Physica Sinica, 2022, 71(5): 197-208. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB202205019.htm
    [25] QIU W, GUO H, ZHENG H, et al. CFD modelling to analyze the droplets deposition behavior on vibrating rice leaves[J]. Computers and Electronics in Agriculture, 2022, 201: 107330. doi: 10.1016/j.compag.2022.107330
    [26] 梁刚涛, 郭亚丽, 沈胜强. 液滴撞击液膜的射流与水花形成机理分析[J]. 物理学报, 2013, 62(2): 415-421. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201302056.htm

    LIANG Gangtao, GUO Yali, SHEN Shengqiang. Analysis of the mechanism of jet flow and splash formation of droplets impacting liquid film[J]. Acta Physica Sinica, 2013, 62(2): 415-421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201302056.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  110
  • HTML全文浏览量:  43
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 修回日期:  2023-11-13
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回