留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究

何树 娄钦

何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212
引用本文: 何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212
HE Shu, LOU Qin. Simulation Study of Porosity Effects of Porous Media on Pool Boiling Heat Transfer Performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212
Citation: HE Shu, LOU Qin. Simulation Study of Porosity Effects of Porous Media on Pool Boiling Heat Transfer Performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212

多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究

doi: 10.21656/1000-0887.440212
基金项目: 

国家自然科学基金 51976128

上海市浦江计划 22PJD047

详细信息
    作者简介:

    何树(1999—),男,硕士生(E-mail: mrshu15@163.com)

    通讯作者:

    娄钦(1984—),女,教授,博士,博士生导师(通讯作者. E-mail: louqin560916@163.com)

  • 中图分类号: O357.41

Simulation Study of Porosity Effects of Porous Media on Pool Boiling Heat Transfer Performances

  • 摘要: 采用介观相变格子Boltzmann(lattice Boltzmann, LB)方法,在孔隙尺度下研究了多孔介质的孔隙率对池沸腾换热过程的影响,重点分析了不同孔隙率时气泡的运动过程,并对气泡在多孔介质中的典型状态进行了力平衡分析,进而探究了多孔介质孔隙率影响沸腾传热的机理.结果表明,与无多孔介质的平板表面相比,多孔材料能够有效地降低初始成核的壁面过热度,增强流体的扰动,并且能够显著提升临界热流密度(critical heat flux,CHF)值.在所研究的工况中,孔隙率ε=73.2%时,CHF值提升最大,约为平板的3.6倍,其余孔隙率的多孔介质最小也可将其CHF值提升至平板的2.3倍.研究发现,当孔隙率从97.7%开始逐渐减小时,CHF值逐渐增大,同时沸腾换热曲线向左上方移动,这是因为减小孔隙率能够增大有效换热面积,减小气泡成核的壁面过热度,从而强化沸腾换热.当孔隙率减小到ε=73.2%时,若继续减小孔隙率,热流密度将突然下降,沸腾传热性能显著降低.通过对沸腾过程中气泡的受力进行分析后发现,当孔隙率较小时,过小的孔隙直径显著增大了气泡的逸出阻力,降低了气泡的上升速度,延长了气泡脱离多孔介质的时间,且此时气泡会在蒸发动量力、接触压力以及摩擦力等的共同作用下聚集在加热器上表面,形成气膜,从而恶化沸腾传热.
  • 图  1  物理问题以及多孔介质间的导热示意图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Schematic diagrams of physical problems and heat conduction between porous media

    图  2  孔隙率为92.6%的多孔介质在加热温度Tb=0.98Tc,1.01Tc,1.05Tc下的各个时刻气泡状态图

    Figure  2.  Bubble state diagrams of porous media with a porosity of 92.6% at heating temperatures Tb=0.98Tc, 1.01Tc and 1.05Tc

    图  3  孔隙率为73.2%的多孔介质在加热温度Tb=0.98Tc,1.01Tc,1.05Tc下的各个时刻气泡状态图

    Figure  3.  Bubble state diagrams of porous media with a porosity of 73.2% at heating temperatures Tb=0.98Tc, 1.01Tc and 1.05Tc

    图  4  孔隙率为61.2%的多孔介质在加热温度Tb=0.98Tc,1.01Tc,1.05Tc下的各个时刻气泡状态图

    Figure  4.  Bubble state diagrams of porous media with a porosity of 61.2% at heating temperatures Tb=0.98Tc, 1.01Tc and 1.05Tc

    图  5  孔隙率为61.2%、接触角为73°的多孔介质在加热温度Tb=1.01Tc下的气泡状态图

    Figure  5.  Bubble state diagrams of porous media with a porosity of 61.2% and a contact angle of 73° under heating temperature Tb=1.01Tc

    图  6  沸腾过程中单气泡在多孔介质中的力平衡

    Figure  6.  Force balance of a single bubble in porous medium during boiling

    图  7  不同孔隙率的多孔介质以及光滑平板的沸腾曲线

    Figure  7.  Boiling curves of porous media with different porosities and smooth plates

    图  8  不同孔隙率的多孔介质在加热温度为0.99Tc下的气泡状态及加热器温度场分布(t*=51.36)

    Figure  8.  Bubble state and heater temperature field distributions of porous media with different porosities at 0.99Tc heating temperature (t*=51.36)

    图  9  两种加热温度下ε=73.2%和ε=67.6%的样本其沸腾过程中气泡的聚集状态

    Figure  9.  The aggregation states of bubbles during the boiling processes of samples with ε=73.2% and ε=67.6% at 2 heating temperatures

    图  10  本研究得到的不同孔隙率中的CHF值与Mori等[14]的理论预测结果对比

    Figure  10.  Comparison of CHF values obtained in this study with the theoretical prediction results of Mori et al.[14] for different porosities

    图  11  气泡在ε=67.6%样本中的聚集过程的受力分析

    Figure  11.  Force analysis of the bubble aggregation process in ε=67.6% samples

    表  1  格子单位与物理单位转换

    Table  1.   The unit conversion from lattice units to physical units

    parameter lattice unit physical unit conversion factor
    ρl 5.426 570.02 kg/m3 106.16 kg/m3
    ρv 0.811 3 86.13 kg/m3 106.16 kg/m3
    l0 16 4.72×10-6 m 2.95×10-7 m
    u0 0.035 8 38.56 m/s 1 077.09 m/s
    t0 447.8 1.224×10-7 s 2.734×10-10 s
    ν 0.06 1.9×10-5 m2/s 3.18×10-4 m2/s
    Tc 0.196 1 647.2 K 3 300.36 K
    pc 0.178 4 2.21×107 Pa 1.24×108 Pa
    cv, l 4.0 1 405.9 J/(kg· K) 351.48 J/(kg· K)
    hfg 0.624 7.26×105 J/kg 1.16×106 J/kg
    λs 32.556 390.67 W/(m· K) 12 W/(m· K)
    下载: 导出CSV

    表  2  不同孔隙率的多孔介质样本其气泡最大接触压力Fcpm以及平均上升速度Vave(格子单位)

    Table  2.   Maximum contact pressures of bubbles in porous medium samples with different porosities Fcpm and average rising speeds Vave (lattice units)

    porosity ε/% t* Rr da σ Fcpm Vave
    97.7 33.50 47.37 258.79 0.009 5 10.55 4.50×10-6
    92.6 37.96 51.06 285.21 0.009 5 11.89 5.24×10-6
    85.2 42.43 51.53 289.66 0.009 5 12.15 4.38×10-6
    73.2 46.90 50.20 312.58 0.009 5 14.52 4.30×10-6
    67.6 53.60 56.84 353.96 0.009 5 16.45 3.83×10-6
    61.2 58.06 58.80 372.42 0.009 5 17.60 3.49×10-6
    53.5 69.23 56.44 374.01 0.009 5 18.49 2.60×10-6
    下载: 导出CSV
  • [1] DEDOV A V, KHAZIEV I A, LAHAREV D A, et al. Study of nucleate pool boiling heat transfer enhancement on surfaces modified by beam technologies[J]. Heat Transfer Engineering, 2022, 43(7): 598-607. doi: 10.1080/01457632.2021.1896834
    [2] 李迎雪, 王浩原, 娄钦. 含多个矩形加热器通道内流动沸腾传热性能的介观数值方法研究[J]. 应用数学和力学, 2022, 43(7): 727-739. doi: 10.21656/1000-0887.420325

    LI Yingxue, WANG Haoyuan, LOU Qin. Mesoscopic numerical study on flow boiling heat transfer performance in channels with multiple rectangular heaters[J]. Applied Mathematics and Mechanics, 2022, 43(7): 727-739. (in Chinese) doi: 10.21656/1000-0887.420325
    [3] YANG Z, YAO Y, WU H. Effects of surfactants on subcooled pool boiling characteristics: an experimental study[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123419. doi: 10.1016/j.ijheatmasstransfer.2022.123419
    [4] ZONOUZI S A, AMINFAR H, MOHAMMADPOURFARD M. A review on effects of magnetic fields and electric fields on boiling heat transfer and CHF[J]. Applied Thermal Engineering, 2019, 151: 11-25. doi: 10.1016/j.applthermaleng.2019.01.099
    [5] ALIZADEH R, GOMARI S R, ALIZADEH A, et al. Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium[J]. Computers and Mathematics With Applications, 2021, 81: 786-810. doi: 10.1016/j.camwa.2019.10.021
    [6] DEHGHAN M, VALIPOUR M S, KESHMIRI A, et al. On the thermally developing forced convection through a porous material under the local thermal non-equilibrium condition: an analytical study[J]. International Journal of Heat and Mass Transfer, 2016, 92: 815-823. doi: 10.1016/j.ijheatmasstransfer.2015.08.091
    [7] EL-GENK M S, PARKER J L. Enhanced boiling of HFE-7100 dielectric liquid on porous graphite[J]. Energy Conversion and Management, 2005, 46(15/16): 2455-2481.
    [8] CHI Y L, BHUIYA M, KIM K J. Pool boiling heat transfer with nano-porous surface[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 4274-4279.
    [9] BERGLES A E, CHYU M C. Characteristics of nucleate pool boiling from porous metallic coatings[J]. ASME Journal of Heat and Mass Transfer, 1982, 104(2): 279-285. doi: 10.1115/1.3245084
    [10] YANG Y, JI X, XU J. Pool boiling heat transfer on copper foam covers with water as working fluid[J]. International Journal of Thermal Sciences, 2010, 49(7): 1227-1237. doi: 10.1016/j.ijthermalsci.2010.01.013
    [11] LI C, WANG Z, WANG P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8): 1084-1088. doi: 10.1002/smll.200700991
    [12] ZHANG B J, KIM K J, YOON H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498.
    [13] ZHANG B J, PARK J, KIM K J. Augmented boiling heat transfer on the wetting-modified three dimensionally-interconnected alumina nano porous surfaces in aqueous polymeric surfactants[J]. International Journal of Heat and Mass Transfer, 2013, 63: 224-232. doi: 10.1016/j.ijheatmasstransfer.2013.03.064
    [14] MORI S, OKUYAMA K. Enhancement of the critical heat flux in saturated pool boiling using honeycomb porous media[J]. International Journal of Multiphase Flow, 2009, 35(10): 946-951. doi: 10.1016/j.ijmultiphaseflow.2009.05.003
    [15] YUKI K, HARA T, IKEZAWA S, et al. Immersion cooling of electronics utilizing lotus-type porous copper[J]. Transactions of the Japan Institute of Electronics Packaging, 2016, 9: E16-013.
    [16] JI X, XU J, ZHAO Z, et al. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces[J]. Experimental Thermal and Fluid Science, 2013, 48: 198-212. doi: 10.1016/j.expthermflusci.2013.03.002
    [17] AN Y, HUANG C, WANG X. Effects of thermal conductivity and wettability of porous materials on the boiling heat transfer[J]. International Journal of Thermal Sciences, 2021, 170: 107-110.
    [18] LI H Y, LEONG K C. Experimental and numerical study of single and two-phase flow and heat transfer in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2011, 54(23/24): 4904-4912.
    [19] PERALTA M, MENDEZ F, BAUTISTA O. Phase-change transpiration cooling in a porous medium: determination of the liquid/two-phase/vapor interfaces as a problem of eigenvalues[J]. Transport in Porous Media, 2016, 112(1): 167-187. doi: 10.1007/s11242-016-0637-7
    [20] SHAN X, CHEN H. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. doi: 10.1103/PhysRevE.47.1815
    [21] CHEN L, KANG Q, MU Y, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. doi: 10.1016/j.ijheatmasstransfer.2014.04.032
    [22] GONG S, CHENG P. Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling[J]. International Journal of Heat and Mass Transfer, 2013, 64: 122-132. doi: 10.1016/j.ijheatmasstransfer.2013.03.058
    [23] LI Q, ZHOU P, YAN H J. Improved thermal lattice Boltzmann model for simulation of liquid-vapor phase change[J]. Physical Review E, 2017, 96(6): 063303. doi: 10.1103/PhysRevE.96.063303
    [24] LOU A Q, WANG H, LI L. A lattice Boltzmann investigation of the saturated pool boiling heat transfer on micro-cavity/fin surfaces[J]. Physics of Fluids, 2023, 35(1): 013316. doi: 10.1063/5.0134043
    [25] 陆威, 王婷婷, 徐洪涛, 等. 多孔介质复合方腔双扩散混合对流LBM模拟[J]. 应用数学和力学, 2017, 38(7): 780-793. doi: 10.21656/1000-0887.370175

    LU Wei, WANG Tingting, XU Hongtao, et al. LBM simulation of double diffusive mixed convection in a porous medium composite cavity[J]. Applied Mathematics and Mechanics, 2017, 38(7): 780-793. (in Chinese) doi: 10.21656/1000-0887.370175
    [26] MONDAL K, BHATTACHARYA A. Bubble dynamics and enhancement of pool boiling in presence of an idealized porous medium: a numerical study using lattice Boltzmann method[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(8): 081004. doi: 10.1115/1.4053054
    [27] SHI J, FENG D, CHEN Z, et al. Numerical study of a hybrid thermal lattice Boltzmann method for pool boiling heat transfer on a modeled hydrophilic metal foam surface[J]. Applied Thermal Engineering, 2023, 229: 120535. doi: 10.1016/j.applthermaleng.2023.120535
    [28] QIN J, XU Z, MA X. Pore-scale simulation on pool boiling eat transfer and bubble dynamics in open-cell metalfoam by lattice Boltzmann method[J]. Journal of Heat Transfer, 2021, 143(1): 011602. doi: 10.1115/1.4048734
    [29] GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4923-4927.
    [30] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101. doi: 10.1063/1.2187070
    [31] LI L, CHEN C, MEI R, et al. Conjugate heat and mass transfer in the lattice Boltzmann equation method[J]. Physical Review E, 2014, 89(4): 043308. doi: 10.1103/PhysRevE.89.043308
    [32] HU Z, WANG D, XU J, et al. Development of a loop heat pipe with the 3D printed stainless steel wick in the application of thermal management[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120258. doi: 10.1016/j.ijheatmasstransfer.2020.120258
    [33] PAVLENKO A N, KUZNETSOV D V, BESSMELTSEV V P. Experimental study on heat transfer and critical heat flux during pool boiling of nitrogen on 3D printed structured copper capillary-porous coatings[J]. Journal of Engineering Thermophysics, 2021, 30: 341-349. doi: 10.1134/S1810232821030012
    [34] 胡卓焕, 罗婷, 许佳寅, 等. 毛细芯蒸汽槽道孔径对环路热管(LHP)传热性能影响研究[J]. 热能动力工程, 2022, 37(5): 86-92. https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202205012.htm

    HU Zhuohuan, LUO Ting, XU Jiayin, et al. Research on effect of various wick steam groove structures on heat transfer performance of loop heat pipe[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(5): 86-92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RNWS202205012.htm
    [35] LOU Q, GUO Z, SHI B. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J]. Physical Review E, 2013, 87(6): 063301. doi: 10.1103/PhysRevE.87.063301
    [36] LIU Z, QIN J, WU Z, et al. Numerical investigation on pool boiling mechanism of hybrid structures with metal foam and square column by LBM[J]. Journal of Thermal Science, 2022, 31(6): 2293-2308. doi: 10.1007/s11630-022-1711-9
    [37] KANDLIKAR S G. Scale effects on flow boiling heat transfer in microchannels: a fundamental perspective[J]. International Journal of Thermal Sciences, 2010, 49(7): 1073-1085. doi: 10.1016/j.ijthermalsci.2009.12.016
    [38] HUANG R L, ZHAO C Y, XU Z G. Investigation of bubble behavior in gradient porous media under pool boiling conditions[J]. International Journal of Multiphase Flow, 2018, 103: 85-93. doi: 10.1016/j.ijmultiphaseflow.2018.02.005
    [39] COLOMBO M, FAIRWEATHER M. Prediction of bubble departure in forced convection boiling: a mechanistic model[J]. International Journal of Heat and Mass Transfer, 2015, 85(1): 135-146.
    [40] ZHANG H W, WANG K P, Chen Z. Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(17/20): 1456-1472.
    [41] SHEN L, SCHMITT D R. Hydro-mechanical modelling of fault movement in response to subsurface fluid injection, a finite element approach[C]//GeoConvention 2016: Optimizing Resources. 2016.
    [42] KARAKASHEV S I, STOCKELHUBER K W, TSEKOV R, et al. Bubble rubbing on hydrophobic solid surfaces[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 638-645. doi: 10.1016/j.colsurfa.2018.07.037
    [43] VEMURI S, KIM K J. Pool boiling of saturated FC-72 on nano-porous surface[J]. International Communications in Heat and Mass Transfer, 2005, 32(1/2): 27-31.
    [44] XU Z G, QU Z G, ZHAO C Y, et al. Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1169-1182. doi: 10.1016/j.ijheatmasstransfer.2014.06.037
    [45] LI C, PETERSON G P, EL-GENK M S. Experimental studies on CHF of pool boiling on horizontal conductive micro porous coated surfaces[J]. American Institute of Physics, 2008, 969: 12-20.
    [46] OU L W, JIANG X C, ZHANG S W, et al. Pool boiling performance of a sintered aluminum powder wick for a lightweight vapor chamber[J]. Machines, 2023, 11(4): 468. doi: 10.3390/machines11040468
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  34
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-12-25
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回