留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性膜对部分充液罐车内液体晃动的抑制效果研究

祁文超 王琼瑶 平凯 陈馨儿

祁文超, 王琼瑶, 平凯, 陈馨儿. 弹性膜对部分充液罐车内液体晃动的抑制效果研究[J]. 应用数学和力学, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271
引用本文: 祁文超, 王琼瑶, 平凯, 陈馨儿. 弹性膜对部分充液罐车内液体晃动的抑制效果研究[J]. 应用数学和力学, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271
QI Wenchao, WANG Qiongyao, PING Kai, CHEN Xiner. Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271
Citation: QI Wenchao, WANG Qiongyao, PING Kai, CHEN Xiner. Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles[J]. Applied Mathematics and Mechanics, 2024, 45(3): 365-378. doi: 10.21656/1000-0887.440271

弹性膜对部分充液罐车内液体晃动的抑制效果研究

doi: 10.21656/1000-0887.440271
基金项目: 

国家自然科学基金 51905384

详细信息
    作者简介:

    祁文超(2000—),男,硕士生(E-mail: qiwenchao_luck@163.com)

    通讯作者:

    王琼瑶(1987—),男,副教授,博士(通讯作者. E-mail: hellowqy@163.com)

  • 中图分类号: O359+.1

Study of Inhibitory Effects of Elastic Membranes on Liquid Sloshing in Partially Filled Tank Vehicles

  • 摘要: 为了提高液罐车的制动性能和侧倾稳定性极限,建立了流固耦合模型,研究了弹性膜对部分充液罐车内液体晃荡的抑制效果.进行了实验室实验,实验结果验证了数值模型的有效性.验证后的模型被进一步用于研究不同的弹性膜配置对晃荡响应的影响,如液体载荷传递、晃荡力、俯仰力矩和罐壁压强.研究中考虑了两种不同的储罐配置,即没有任何阻尼装置的储罐和具有各种弹性膜组合的储罐,以进行比较.结果表明,添加弹性膜可以显著限制液体的运动,从而显著降低由晃动引起的俯仰力矩,这将提高罐车的制动性能和侧倾稳定性极限.
  • 图  1  弹性膜配置

    Figure  1.  Elastic membrane configuration

    图  2  斜坡阶跃加速度激励

    Figure  2.  The rounded ramp-step acceleration input

    图  3  质心坐标以及晃动力和俯仰力矩的计算

    Figure  3.  Calculation of centroid coordinates, slosh forces and pitch moment

    图  4  实验装置

    Figure  4.  The experimental setup

    图  5  加速度传感器测量的实际加速度时间变化

    Figure  5.  The actual acceleration time history measured by the acceleration sensor

    图  6  0.4~7.3 s之间8个时刻的实验快照和数值模拟的比较(液体深度h=35 mm)

    Figure  6.  Comparison of experimental snapshots and numerical simulations for 8 moments between 0.4~7.3 s (liquid depth h=35 mm)

    图  7  溃坝对弹性板的冲击

    Figure  7.  The dam break impacting on an elastic plate

    图  8  三种不同网格尺寸的俯仰力矩时程比较

    Figure  8.  Comparison of time histories at pitch moments obtained for 3 different mesh sizes

    图  9  不同构型储罐纵向力时程和相应纵向基频的比较

    Figure  9.  Comparison of the time histories and corresponding frequencies of the longitudinal forces of tanks with different configurations

    图  10  不同配置储罐垂向力的时程比较

    Figure  10.  Time history comparison of vertical forces for different configurations of storage tanks

    图  11  不同结构储罐2.5 s时刻液体自由表面变形的比较

    Figure  11.  Comparison of free surface deformations of liquid for different configurations of tanks at moment 2.5 s

    图  12  不同储罐配置俯仰力矩的时程比较

    Figure  12.  Time history comparison of pitch moments for different tank configurations

    图  13  不同储罐配置液体载荷转移时程的比较

    Figure  13.  Comparison of liquid load transfer time histories for different tank configurations

    图  14  不同储罐配置液相质心坐标变化历史的比较

    Figure  14.  Comparison of coordinate change histories of liquid-phase mass centers for different tank configurations

    表  1  右壁上不同高度位置(a)的压强峰值时程比较

    Table  1.   Comparison of time histories of the peak values of pressure in different height positions (a) on the right wall

    height a/H 0 0.2 0.4 0.5 0.6 0.8 1
    T0 40.1 35.8 31.4 29.3 27.3 23.1 18.6
    δ0/% - - - - - - -
    T1 52.2 48.5 44.9 43.8 5.1 1.1 0.6
    δ1/% +30.2 +35.7 +42.9 +49.3 -81.4 -95.1 -96.6
    T2 45.4 41.3 37.2 35.5 21.8 8.8 7.8
    δ2/% +13.2 +15.5 +18.4 +21.1 -20.1 -61.7 -58.1
    T3 52.1 48.0 44.0 42.4 15.4 8.1 8.1
    δ3/% +29.8 +34.3 +40.1 +44.7 -43.6 -64.8 -56.3
    下载: 导出CSV

    表  2  右壁上不同高度位置(a)的压强稳态值时程比较

    Table  2.   Comparison of time histories of the steady-state values of pressure in different height positions (a) on the right wall

    height a/H 0 0.2 0.4 0.5 0.6 0.8 1
    T0 26.0 21.4 16.8 14.4 12.1 7.4 3.2
    δ0/% - - - - - - -
    T1 26.3 21.5 16.7 14.8 1.9 0.3 0.1
    δ1/% +1.2 +0.6 -0.3 +2.5 -84.7 -95.8 -96.6
    T2 27.6 22.9 18.2 16.0 9.9 6.1 3.3
    δ2/% +5.9 +6.8 +8.1 +10.8 -17.7 -17.5 +4.9
    T3 27.4 22.7 18.0 15.8 10.3 6.5 3.5
    δ3/% +5.3 +5.9 +6.9 +9.5 -14.6 -11.6 +11.7
    下载: 导出CSV
  • [1] KOLAEI A, RAKHEJA S. Free vibration analysis of coupled sloshing-flexible membrane system in a liquid container[J]. Journal of Vibration and Control, 2019, 25(1): 84-97. doi: 10.1177/1077546318771221
    [2] KOLAEI A, RAKHEJA S, RICHARD M J. An efficient methodology for simulating roll dynamics of a tank vehicle coupled with transient fluid slosh[J]. Journal of Vibration and Control, 2017, 23(19): 3216-3232. doi: 10.1177/1077546315627565
    [3] WOODROOFFE J. Evaluation of dangerous goods vehicle safety performance[R]. 2000.
    [4] 李杰, 于志新, 程新新, 等. 车-液耦合响应下液罐车稳定性控制仿真[J]. 油气储运, 2020, 39(2): 188-194. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm

    LI Jie, YU Zhixin, CHENG Xinxin, et al. Simulation of stability control of tank trucks under vehicle-liquid coupling response[J]. Oil & Gas Storage and Transportation, 2020, 39(2): 188-194. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202002009.htm
    [5] 于志新, 李杰, 程新新, 等. 液罐车稳定性最优控制仿真[J]. 油气储运, 2019, 38(8): 885-891. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm

    YU Zhixin, LI Jie, CHENG Xinxin, et al. Simulation on the optimal control of the stability of liquid tank truck[J]. Oil & Gas Storage and Transportation, 2019, 38(8): 885-891. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY201908007.htm
    [6] RAKHEJA S, SANKAR S, RANGANATHAN R. Roll plane analysis of articulated tank vehicles during steady turning[J]. Vehicle System Dynamics, 1988, 17(1/2): 81-104.
    [7] WANG Z Q, RAKHEJA S, SUN C Z. Influence of partition location on the braking performance of a partially-filled tank truck[R]. 1995.
    [8] BELLEZI C A, CHENG L Y, OKADA T, et al. Optimized perforated bulkhead for sloshing mitigation and control[J]. Ocean Engineering, 2019, 187: 106171. doi: 10.1016/j.oceaneng.2019.106171
    [9] YU L T, XUE M A, JIANG Z Y. Experimental investigation of parametric sloshing in a tank with vertical baffles[J]. Ocean Engineering, 2020, 213: 107783. doi: 10.1016/j.oceaneng.2020.107783
    [10] 包文红, 张应龙, 班涛, 等. 液罐车内液体晃动对防波板的冲击仿真[J]. 油气储运, 2022, 41(9): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm

    BAO Wenhong, ZHANG Yinglong, BAN Tao, et al. Simulation on impact of liquid sloshing on baffles in liquid tankers[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1087-1094. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-YQCY202209012.htm
    [11] 钟文坤, 吴玖荣, 孙连杨. 考虑挡板间水动力相互作用影响的矩形TLD水箱阻尼比分析[J]. 应用数学和力学, 2021, 42(1): 71-81. doi: 10.21656/1000-0887.410154

    ZHONG Wenkun, WU Jiurong, SUN Lianyang. Damping ratio analysis of rectangular TLD tanks with hydrodynamic interaction effects between baffles[J]. Applied Mathematics and Mechanics, 2021, 42(1): 71-81. (in Chinese)) doi: 10.21656/1000-0887.410154
    [12] GOUDARZI M A, DANESH P N. Numerical investigation of a vertically baffled rectangular tank under seismic excitation[J]. Journal of Fluids and Structures, 2016, 61: 450-460. doi: 10.1016/j.jfluidstructs.2016.01.001
    [13] KOLAEI A, RAKHEJA S, RICHARD M J. A coupled multimodal and boundary-element method for analysis of anti-slosh effectiveness of partial baffles in a partly-filled container[J]. Computers & Fluids, 2015, 107: 43-58.
    [14] HASHEMINEJAD S M, MOHAMMADI M M, JARRAHI M. Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles[J]. Journal of Fluids and Structures, 2014, 44: 97-114. doi: 10.1016/j.jfluidstructs.2013.09.019
    [15] WANG Q Y, RAKHEJA S, SHANGGUAN W B. Effect of baffle geometry and air pressure on transient fluid slosh in partially filled tanks[J]. International Journal of Heavy Vehicle Systems, 2017, 24(4): 378-401. doi: 10.1504/IJHVS.2017.087241
    [16] VNAL U O, BILICI G, AKYILDIZ H. Liquid sloshing in a two-dimensional rectangular tank: a numerical investigation with a T-shaped baffle[J]. Ocean Engineering, 2019, 187: 106183. doi: 10.1016/j.oceaneng.2019.106183
    [17] KORKMAZ F C, GVZEL B. On the effects of the number of baffles in sloshing dynamics[J]. Ships and Offshore Structures, 2021, 18(1): 1-13.
    [18] THIRUNAVUKKARASU B, RAJAGOPAL T K R. Numerical investigation of sloshing in tank with horivert baffles under resonant excitation using CFD code[J]. Thin-Walled Structures, 2021, 161: 107517. doi: 10.1016/j.tws.2021.107517
    [19] HWANG S C, PARK J C, GOTOH H, et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method[J]. Ocean Engineering, 2016, 118: 227-241. doi: 10.1016/j.oceaneng.2016.04.006
    [20] ZHANG Z L, KHALID M S U, LONG T, et al. Investigations on sloshing mitigation using elastic baffles by coupling smoothed finite element method and decoupled finite particle method[J]. Journal of Fluids and Structures, 2020, 94: 102942. doi: 10.1016/j.jfluidstructs.2020.102942
    [21] BAUER H F. Coupled frequencies of a liquid in a circular cylindrical container with elastic liquid surface cover[J]. Journal of Sound and Vibration, 1995, 180(5): 689-704. doi: 10.1006/jsvi.1995.0109
    [22] TARIVERDILO S, MIRZAPOUR J, SHAHMARDANI M, et al. Free vibration of membrane/bounded incompressible fluid[J]. Applied Mathematics and Mechanics, 2012, 33: 1167-1178. doi: 10.1007/s10483-012-1613-8
    [23] CHIBA M, MURASE R, KIMURA R, et al. Experimental studies on the dynamic stability of liquid in a spherical tank covered with diaphragm under vertical excitation[J]. Journal of Fluids and Structures, 2016, 61: 218-248. doi: 10.1016/j.jfluidstructs.2015.11.011
    [24] WANG Q Y, JIANG L, CHAI M, et al. Numerical and experimental analysis of the effect of elastic membrane on liquid sloshing in partially filled tank vehicles[J]. Mechanics Based Design of Structures and Machines, 2021, 51(3): 1741-1757.
    [25] WANG Q Y, LIN G M, JIANG L, et al. Numerical and experimental study of anti-slosh performance of combined baffles in partially filled tank vehicles[J]. International Journal of Pressure Vessels and Piping, 2022, 196: 104555. doi: 10.1016/j.ijpvp.2021.104555
    [26] PELTONEN P, KANNINEN P, LAURILA E, et al. The ghost fluid method for OpenFOAM: a comparative study in marine context[J]. Ocean Engineering, 2020, 216: 108007. doi: 10.1016/j.oceaneng.2020.108007
    [27] GORDNIER R E. High fidelity computational simulation of a membrane wing airfoil[J]. Journal of Fluids and Structures, 2009, 25(5): 897-917. doi: 10.1016/j.jfluidstructs.2009.03.004
    [28] 孙旭, 张家忠, 黄必武. 弹性薄膜类流固耦合问题的CBS有限元分析[J]. 力学学报, 2013, 45(5): 787-791. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm

    SUN Xu, ZHANG Jiazhong, HUANG Biwu. CBS finite element analysis of fluid structure coupling problems in elastic thin films[J]. Chinese Journal of Theoretical and Applied, 2013, 45(5): 787-791. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201305019.htm
    [29] BUNGARTZ H J, LINDNER F, GATZHAMMER B, et al. preCICE: a fully parallel library for multi-physics surface coupling[J]. Computers & Fluids, 2016, 141: 250-258.
    [30] LIAO K P, HU C H, SUEYOSHI M. Free surface flow impacting on an elastic structure: experiment versus numerical simulation[J]. Applied Ocean Research, 2015, 50: 192-208. doi: 10.1016/j.apor.2015.02.002
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  66
  • HTML全文浏览量:  29
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-18
  • 修回日期:  2023-11-21
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回