[1] |
ELICES M, GUINEA G V, GÓMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69(2): 137-163. doi: 10.1016/S0013-7944(01)00083-2
|
[2] |
嵇醒. 断裂力学判据的评述[J]. 力学学报, 2016, 48(4): 741-753. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604001.htmJI Xing. A critical review on criteria of fracture mechanics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 741-753. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201604001.htm
|
[3] |
BARENBLATT G I. The formation of equilibrium crack during brittle fracture, general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23(3): 622-636. doi: 10.1016/0021-8928(59)90157-1
|
[4] |
DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. doi: 10.1016/0022-5096(60)90013-2
|
[5] |
VINCENTE P, XAI L, ANDY Z, et al. Integration of an adaptive cohesive zone and continuum ductile fracture model to simulate crack propagation in steel structures[J]. Engineering Fracture Mechanics, 2021, 258(6): 108041.
|
[6] |
BARSOUM I, YURINDATAMA D T. Collapse analysis of a large plastic pipe using cohesive zone modelling technique[J]. International Journal of Pressure Vessels and Piping, 2020, 187(11): 104155.
|
[7] |
邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
|
[8] |
HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773-781. doi: 10.1016/0008-8846(76)90007-7
|
[9] |
NAIRN J A, AIMENE Y E. A re-evaluation of mixed-mode cohesive zone modeling based on strength concepts instead of traction laws[J]. Engineering Fracture Mechanics, 2021, 248: 107704. doi: 10.1016/j.engfracmech.2021.107704
|
[10] |
YANG Z, ZHU Z, XIA Y, et al. Modified cohesive zone model for soft adhesive layer considering rate dependence of intrinsic fracture energy[J]. Engineering Fracture Mechanics, 2021, 258: 108089. doi: 10.1016/j.engfracmech.2021.108089
|
[11] |
FARLE A S, KRISHNASAMY J, TURTELTAUB S, et al. Determination of fracture strength and fracture energy of (metallo-) ceramics by a wedge loading methodology and corresponding cohesive zone-based finite element analysis[J]. Engineering Fracture Mechanics, 2018, 196: 56-70. doi: 10.1016/j.engfracmech.2018.03.014
|
[12] |
LI Y, REESE S, SIMON J W. Modeling the fiber bridging effect in cracked wood and paperboard using a cohesive zone model[J]. Engineering Fracture Mechanics, 2018, 196: 83-97. doi: 10.1016/j.engfracmech.2018.04.002
|
[13] |
ESMAILI A, TAHERI-BEHROOZ F. Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading[J]. Engineering Fracture Mechanics, 2020, 237: 107246 doi: 10.1016/j.engfracmech.2020.107246
|
[14] |
PONNUSAMI S A, KRISHNASAMY J, TURTELTAUB S, et al. A cohesive-zone crack healing model for self-healing materials[J]. International Journal of Solids and Structures, 2018, 134: 249-263. doi: 10.1016/j.ijsolstr.2017.11.004
|
[15] |
ETIENNE M, MOUAD J, FREDERIC J, et al. A cohesive zone model for the characterization of adhesion between cement paste and aggregates[J]. Construction and Building Materials, 2018, 193: 64-71. doi: 10.1016/j.conbuildmat.2018.10.188
|
[16] |
DUAN S J, NAKAGAWA K. Stress functions with finite stress concentration at the crack tips for central cracked panel[J]. Engineering Fracture Mechanics, 1988, 29(5): 517-526. doi: 10.1016/0013-7944(88)90177-4
|
[17] |
段树金, 藤井康寿, 中川建治. 构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数[J]. 应用数学和力学, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030DUAN Shujin, FUJⅡ Koju, NAKAGAWA Kenji. Construction of general analytic functions with finite stress concentration for mono-material cracks and bi-material interface cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. (in Chinese) doi: 10.21656/1000-0887.390030
|
[18] |
RICE J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks[J]. Journal of Applied Mechanics, 1968, 35(2): 379-386. doi: 10.1115/1.3601206
|
[19] |
DUAN S J, FUJⅡ K, NAKAGAWA K. Finite stress concentrations and J-integrals from normal loads on a penny-shaped crack[J]. Engineering Fracture Mechanics, 1989, 32(2): 67-176.
|
[20] |
AN R M, DUAN S J, GUO Q M. A new method to determine tensile strain softening curve of quasi-brittle materials[C]//Sustainable Solutions in Structural Engineering and Construction. Singapore: Research Publishing, 2014.
|
[21] |
PETERSSON P E. Crack growth and formation of fracture zones in plain concrete and similar materials[R]. 1981.
|
[22] |
郭向勇, 方坤河, 冷发光. 混凝土断裂能的理论分析[J]. 哈尔滨工业大学学报, 2005, 37(9): 1219-1222. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200509017.htmGUO Xiangyong, FANG Kunhe, LENG Faguang. Analysis of the theory fracture energy of concrete[J]. Journal of Harbin Institute of Technology, 2005, 37(9): 1219-1222. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX200509017.htm
|
[23] |
卿龙邦, 李庆斌, 管俊峰. 混凝土断裂过程区长度计算方法研究[J]. 工程力学, 2012, 29(4): 197-201. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204032.htmQING Longbang, LI Qingbin, GUAN Junfeng. Calculation method of the length of fracture process zone of concrete[J]. Engineering Mechanics, 2012, 29(4): 197-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201204032.htm
|
[24] |
徐平, 郑满奎, 王超, 等. 考虑尺寸及纤维掺量影响的高强混凝土断裂能试验研究[J]. 硅酸盐通报, 2020, 39(11): 3488-3495. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202011013.htmXU Ping, ZHENG Mankui, WANG Chao, et al. Experimental study on fracture energy of high strength concrete considering the influence of size and fiber content[J]. Bulletin of The Chinese Ceramic Society, 2020, 39(11): 3488-3495. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202011013.htm
|
[25] |
段树金, 解沅衡, 侯永康, 等. 含裂纹简支梁在均布荷载作用下的内聚区模型解析函数[J]. 应用力学学报, 2019, 36(2): 310-315. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201902010.htmDUAN Shujin, XIE Yuanheng, HOU Yongkang, et al. Cohesive zone model analytic function to simply supported beam with an edge-crack under uniform distributed load[J]. Chinese Journal of Applied Mechanics, 2019, 36(2): 310-315. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201902010.htm
|
[26] |
侯永康, 段树金, 安蕊梅. 满足断裂过程区裂纹张开位移条件应力函数的半解析解法[J]. 应用数学和力学, 2018, 39(8): 979-988. doi: 10.21656/1000-0887.380296HOU Yongkang, DUAN Shujin, AN Ruimei. Cohesive zone model analytic function to simply supported beam with an edge-crack under uniform distributed load[J]. Applied Mathematics and Mechanics, 2018, 39(8): 979-988. (in Chinese) doi: 10.21656/1000-0887.380296
|