[1] |
SHECHTMAN D, BLECH I, GRATIAS D, et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters, 1984, 53(20): 1951-1953. doi: 10.1103/PhysRevLett.53.1951
|
[2] |
范天佑. 准晶数学弹性理论及应用[M]. 北京: 北京理工大学出版社, 1999.FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing: Beijing Institute of Technology Press, 1999. (in Chinese)
|
[3] |
ZHANG Z, URBAN K. Transmission electron microscope observations of dislocations and stacking faults in a decagonal Al-Cu-Co alloy[J]. Philosophical Magazine Letters, 1989, 60(3): 97-102. doi: 10.1080/09500838908206442
|
[4] |
LI P D, LI X Y, KANG G Z. Crack tip plasticity of a half-infinite Dugdale crack embedded in an infinite space of one-dimensional hexagonal quasicrystal[J]. Mechanics Research Communications, 2015, 70: 72-78. doi: 10.1016/j.mechrescom.2015.09.007
|
[5] |
YU J, GUO J H. Analytical solution for a 1D hexagonal quasicrystal strip with two collinear mode-Ⅲ cracks perpendicular to the strip boundaries[J]. Crystals, 2023, 13(4): 661. doi: 10.3390/cryst13040661
|
[6] |
卢绍楠, 赵雪芬, 马园园. 一维六方压电准晶双材料界面共线裂纹问题[J]. 应用数学和力学, 2023, 44(7): 809-824. doi: 10.21656/1000-0887.430111LU Shaonan, ZHAO Xuefen, MA Yuanyuan. Problem of interface collinear cracks between one dimensional hexagonal piezoelectric quasicrystal bimaterials[J]. Applied Mathematics and Mechanics, 2023, 44(7): 809-824. (in Chinese) doi: 10.21656/1000-0887.430111
|
[7] |
GRUSHKO B, HOLLAND-MORITZ D, HOLLAND-MORITZ D, et al. Transition between periodic and quasiperiodic structures in Al-Ni-Co[J]. Journal Alloys and Compounds, 1998, 280(1): 215-230.
|
[8] |
HIRAGA K, OHSUNA T, SUN W, et al. The structural characteristics of Al-Co-Ni decagonal quasicrystals and crystalline approximants[J]. Journal Alloys and Compounds, 2002, 342(1): 110-114.
|
[9] |
YAVAS B, LI M X, LEONARD H R, et al. Identifying experimental parameters for in situ TEM heating experiments on metastable microstructures: application to a quasicrystal-reinforced Al alloy[J]. Microscopy and Microanalysis, 2002, 28(S1): 1840-1842.
|
[10] |
DANG H Y, QI D P, ZHAO M H, et al. The thermally induced interfacial behavior of a thin two-dimensional decagonal quasicrystal film[J]. International Journal of Fracture, 2023, 224(1/2): 1-14.
|
[11] |
NGUYEN H V, DO N B, NGUYEN T H O, et al. Synthesis and magnetic properties of Al-Cu-Fe quasicrystals prepared by mechanical alloying and heat treatment[J]. Journal of Materials Research, 2023, 38(3): 644-653. doi: 10.1557/s43578-022-00846-1
|
[12] |
SLADEK J, SLADEK V, REPKA M, et al. Gradient theory of thermoelasticity for interface crack problems with a quasicrystal layer[J]. International Journal of Solids and Structures, 2023, 264: 112097. doi: 10.1016/j.ijsolstr.2022.112097
|
[13] |
FAN C Y, YUAN Y P, PAN Y B, et al. Analysis of cracks in one-dimensional hexagonal quasicrystals with the heat effect[J]. International Journal of Solids and Structures, 2017, 120: 146-156. doi: 10.1016/j.ijsolstr.2017.04.036
|
[14] |
LI P D, LI X Y, KANG G Z. Axisymmetric thermo-elastic field in an infinite one-dimensional hexagonal quasi-crystal space containing a penny-shaped crack under anti-symmetric uniform heat fluxes[J]. Engineering Fracture Mechanics, 2018, 190: 74-92. doi: 10.1016/j.engfracmech.2017.12.001
|
[15] |
ZHANG X, FAN C Y, LU C S, et al. Three-dimensional thermal fracture analysis of a one-dimensional hexagonal quasicrystal coating with interface cracks[J]. Engineering Fracture Mechanics, 2023, 277: 1-20.
|
[16] |
GUO J H, YU J, XING Y M, et al. Thermoelastic analysis of a two-dimensional decagonal quasicrystal with a conductive elliptic hole[J]. Acta Mechanica, 2016, 227(9): 2595-2607. doi: 10.1007/s00707-016-1657-7
|
[17] |
DING D H, YANG W G, HU C Z. Generalized elasticity theory of quasicrystals[J]. Physical Review B, 1993, 48: 7003-7010. doi: 10.1103/PhysRevB.48.7003
|
[18] |
LI L H, LIU G T. Icosahedral quasicrystals solids with an elliptic hole under uniform heat flow[J]. Chinese Physics B, 2014, 23(5): 056101. doi: 10.1088/1674-1056/23/5/056101
|
[19] |
ZHONG X C, LONG X Y, ZHANG L H. An extended thermal-medium crack model[J]. Applied Mathematical Modelling, 2018, 56: 202-216. doi: 10.1016/j.apm.2017.11.016
|
[20] |
EDE A J. An Introduction to Heat Transfer: Principles and Calculations[M]. New York: Pergamon Press, 1967.
|
[21] |
范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2006.FAN Tianyou. The Theoretical Basis of Fracture[M]. Beijing: Science Press, 2006. (in Chinese)
|
[22] |
FABRIKANT V I. Computation of infinite integrals involving three Bessel functions by introduction of new formalism[J]. ZAMM Journal of Applied Mathematics and Mechanics, 2003, 83(6): 363-374. doi: 10.1002/zamm.200310059
|
[23] |
FAN T Y. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Beijing: Science Press, 2017.
|
[24] |
ZHONG X C, WU B, ZHANG K S. Thermally conducting collinear cracks engulfed by thermomechanical field in a material with orthotropy[J]. Theoretical and Applied Fracture Mechanics, 2013, 65: 61-68. doi: 10.1016/j.tafmec.2013.05.009
|
[25] |
ZHONG X C, WU B. Thermoelastic analysis for an opening crack in an orthotropic material[J]. International Journal of Fracture, 2012, 173(1): 49-55. doi: 10.1007/s10704-011-9665-z
|
[26] |
BADALIANCE R. Application of strain energy density factor to fatigue crack growth analysis[J]. Engineering Fracture Mechanics, 1980, 13(3): 657-666. doi: 10.1016/0013-7944(80)90094-6
|