留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

凹截面薄壁管轴向冲击时的变形模式及能量吸收性能研究

唐智亮 高永强 许卫锴

唐智亮, 高永强, 许卫锴. 凹截面薄壁管轴向冲击时的变形模式及能量吸收性能研究[J]. 应用数学和力学, 2025, 46(2): 165-174. doi: 10.21656/1000-0887.450049
引用本文: 唐智亮, 高永强, 许卫锴. 凹截面薄壁管轴向冲击时的变形模式及能量吸收性能研究[J]. 应用数学和力学, 2025, 46(2): 165-174. doi: 10.21656/1000-0887.450049
TANG Zhiliang, GAO Yongqiang, XU Weikai. Deformation Modes and Energy Absorption Performances of Concave Profile Tubes Under Axial Crash[J]. Applied Mathematics and Mechanics, 2025, 46(2): 165-174. doi: 10.21656/1000-0887.450049
Citation: TANG Zhiliang, GAO Yongqiang, XU Weikai. Deformation Modes and Energy Absorption Performances of Concave Profile Tubes Under Axial Crash[J]. Applied Mathematics and Mechanics, 2025, 46(2): 165-174. doi: 10.21656/1000-0887.450049

凹截面薄壁管轴向冲击时的变形模式及能量吸收性能研究

doi: 10.21656/1000-0887.450049
基金项目: 

辽宁省自然科学基金 2019-ZD-0229

宿迁市自然科学基金 K202124

详细信息
    作者简介:

    唐智亮(1982—),男,讲师,博士(E-mail: zhltang22@163.com)

    高永强(1976—),男,讲师,博士(E-mail: wersan@163.com)

    通讯作者:

    许卫锴(1979—),男,教授,博士,硕士生导师(通讯作者. E-mail: wkxu@squ.edu.cn)

  • 中图分类号: O347.3

Deformation Modes and Energy Absorption Performances of Concave Profile Tubes Under Axial Crash

  • 摘要: 研究了凹截面薄壁管受轴向冲击时的变形模式及能量吸收性能. 研究结果展示了凹截面管相比传统凸多边形管在提高能量吸收性能方面的优势. 根据数值模拟结果绘制出凹截面薄壁管轴向变形模式分类图,分析了变形模式随截面参数变化的规律. 研究了凹截面薄壁管在轴向冲击及倾斜冲击载荷作用下的变形模式及能量吸收性能. 研究表明,合理设计的凹截面薄壁管较传统凸正多边形薄壁管的能量吸收性能有显著提高.
  • 图  1  各种截面管压溃强度[18]

    Figure  1.  Crush strengths of various cross-sections[18]

    图  2  多胞管横截面示意图

    Figure  2.  Multi-cell profiles

    图  3  凹截面管横截面示意图

    Figure  3.  Concave profiles

    图  4  有限元分析模型示意图

    Figure  4.  Schematic of the finite element analysis (FEA) model

    图  5  方管、凹十二边形管和凹二十边形管截面几何尺寸

    Figure  5.  Profile of tubes

    图  6  铝合金AA6060 T4单轴拉伸应力-应变曲线

    Figure  6.  The tensile stress-strain curve of AA6060 T4

    图  7  网格收敛性分析

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Mesh convergency analysis

    图  8  凹多边形管变形模式

    Figure  8.  Deformed modes of concave profiles

    图  9  凹多边形管不同变形模式冲击力曲线

    Figure  9.  Crushing force curves of concave profile tubes for different deformation modes

    图  10  方管轴向冲击变形模式分类图

    Figure  10.  The deformation mode classification of the square tube

    图  11  凹十二边形管轴向冲击变形模式分类图

    Figure  11.  The deformation mode classification of the concave dodecagon tube

    图  12  凹二十边形管轴向冲击变形模式分类图

    Figure  12.  The deformation mode classification of the concave icosagon tube

    图  13  倾斜冲击有限元模型示意图

    Figure  13.  Schematic of the oblique crash FEA model

    图  14  倾斜角为5°时,管压缩后变形图

    Figure  14.  Deformed pattens of tubes under oblique loads for α=5°

    图  15  方管、凹十二边形管及凹二十边形管的载荷-位移曲线(α=5°)

    Figure  15.  Crushing force vs. displacement curves of square the tube, the concave dodecagon tube and the concave icosagon tube (α=5°)

    图  16  方管、凹十二边形管及凹二十边形管的能量吸收-位移曲线(α=5°)

    Figure  16.  Energy absorption vs. displacement curves of the square tube, the concave dodecagon tube and the concave icosagon tube (α=5°)

    图  17  倾斜角α=10°时,管压缩后变形图

    Figure  17.  Deformed pattens of tubes under oblique loads for α=10°

    图  18  方管、凹十二边形管及凹二十边形管的载荷-位移曲线(α=10°)

    Figure  18.  Crushing force vs. displacement curves of the square tube, the concave dodecagon tube and the concave icosagon tube (α=10°)

    图  19  方管、凹十二边形管及凹二十边形管的能量吸收-位移曲线(α=10°)

    Figure  19.  Energy absorption vs. displacement curves of the square tube, the concave dodecagon tube and the concave icosagon tube (α=10°)

    表  1  倾斜角为α=5°时,方管、凹十二边形管及凹二十边形管能量吸收性能

    Table  1.   Crashworthiness of tubes under oblique loads for α=5°: the square tube, the concave dodecagon tube and the concave icosagon tube

    profile MCF/kN IPCF/kN EA/J SEA/(kJ/kg) CFE/%
    square 6.02 13.26 632.94 5.21 45.40
    concave dodecagon 13.21 17.49 1 388.34 11.43 75.53
    concave icosagon 18.64 29.36 1 959.57 16.13 63.49
    下载: 导出CSV

    表  2  倾斜角α=10°时,方管、凹十二边形管及凹二十边形管能量吸收性能

    Table  2.   Crashworthiness of tubes under oblique loads for α=10°: the square tube, the concave dodecagon tube and the concave icosagon tube

    profile MCF/kN IPCF/kN EA/J SEA/(kJ/kg) CFE/%
    square 5.48 9.85 575.92 4.74 55.63
    concave dodecagon 11.89 17.57 1 249.97 10.29 67.67
    concave icosagon 8.77 22.74 922.18 7.59 38.57
    下载: 导出CSV
  • [1] 余同希, 卢国兴, 张雄. 能量吸收: 结构与材料的力学行为和塑性分析[M]. 北京: 科学出版社, 2019.

    YU Tongxi, LU Guoxing, ZHANG Xiong. Energy Absorption: Mechanical Behavior and Plastic Analysis of Structures and Materials[M]. Beijing: Science Press, 2019. (in Chinese)
    [2] 李金矿, 万文玉, 刘闯. 形状记忆合金蜂窝结构抗冲击性能研究[J]. 应用数学和力学, 2024, 45(1): 34-44. doi: 10.21656/1000-0887.440004

    LI Jinkuang, WAN Wenyu, LIU Chuang. Study on impact resistance of shape memory alloy honeycomb structures[J]. Applied Mathematics and Mechanics, 2024, 45(1): 34-44. (in Chinese) doi: 10.21656/1000-0887.440004
    [3] 杨帆, 王鹏, 范华林, 等. 薄壁管状吸能结构的吸能性能及变形模式的理论研究进展[J]. 力学季刊, 2018, 39(4): 663-680.

    YANG Fan, WANG Peng, FAN Hualin, et al. Review of theoretical models on the energy absorption and deformation modes of the thin-walled tubular structures[J]. Chinese Quarterly of Mechanics, 2018, 39(4): 663-680. (in Chinese)
    [4] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15. doi: 10.1093/qjmam/13.1.10
    [5] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, 1983, 50(4a): 727-734. doi: 10.1115/1.3167137
    [6] MAMALIS A G, MANOLAKOS D E, BALDOUKAS A K, et al. Energy dissipation and associated failuremodes when axially loading polygonal thin-walled cylinders[J]. Thin-Walled Structures, 1991, 12(1): 17-34. doi: 10.1016/0263-8231(91)90024-D
    [7] WHITE M D, JONES N, ABRAMOWICZ W. A theoretical analysis for the quasi-static axial crushing of top-hat and double-hat thin-walled sections[J]. International Journal of Mechanical Sciences, 1999, 41(2): 209-233. doi: 10.1016/S0020-7403(98)00048-4
    [8] HA N S, LU G X. Thin-walled corrugated structures: a review of crashworthiness designs and energy absorption characteristics[J]. Thin-Walled Structures, 2020, 157: 106995. doi: 10.1016/j.tws.2020.106995
    [9] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency[J]. Thin-Walled Structures, 2002, 40(4): 311-327. doi: 10.1016/S0263-8231(01)00069-6
    [10] CHEN W, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306. doi: 10.1016/S0263-8231(01)00006-4
    [11] ZHANG X, CHENG G, ZHANG H. Theoretical prediction and numerical simulation of multi-cell square thin-walled structures[J]. Thin-Walled Structures, 2006, 44(11): 1185-1191. doi: 10.1016/j.tws.2006.09.002
    [12] TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns[J]. Thin-Walled Structures, 2012, 51: 112-120. doi: 10.1016/j.tws.2011.10.005
    [13] LI Y, YOU Z. Origami concave tubes for energy absorption[J]. International Journal of Solids and Structures, 2019, 169: 21-40. doi: 10.1016/j.ijsolstr.2019.03.026
    [14] WU S Y, LI G Y, SUN G Y, et al. Crashworthiness analysis and optimization of sinusoidal corrugation tube[J]. Thin-Walled Structures, 2016, 105: 121-134. doi: 10.1016/j.tws.2016.03.029
    [15] HOU S J, LI Q, LONG S Y, et al. Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria[J]. Finite Elements in Analysis and Design, 2007, 43(6/7): 555-565.
    [16] FYLLINGEN ∅, HOPPERSTAD O S, LANGSETH M. Simulations of a top-hat section subjected to axial crushing taking into account material and geometry variations[J]. International Journal of Solids and Structures, 2008, 45(24): 6205-6219. doi: 10.1016/j.ijsolstr.2008.07.011
    [17] MAMALIS A G, MANOLAKOS D E, IOANNIDIS M B, et al. Finite element simulation of the axial collapse of metallic thin-walled tubes with octagonal cross-section[J]. Thin-Walled Structures, 2003, 41(10): 891-900. doi: 10.1016/S0263-8231(03)00046-6
    [18] YAMASHITA M, GOTOH M, SAWAIRI Y. Axial crush of hollow cylindrical structures with various polygonal cross-sections numerical simulation and experiment[J]. Journal of Materials Processing Technology, 2003, 140(1/2/3): 59-64.
    [19] WIERZBICKI T, JONES N. Structural Failure[M]. New York: John Wiley and Sons, 1989.
    [20] 刘旺玉, 田鹏飞, 金林, 等. 角单元对薄壁管耐撞性的影响[J]. 华南理工大学学报(自然科学版), 2021, 49(6): 28-33.

    LIU Wangyu, TIAN Pengfei, JIN Lin, et al. Influence of angle element on crashworthiness of thin-walled tubes[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(6): 28-33. (in Chinese)
    [21] SANTOSA S P, WIERZBICKI T, HANSSEN A G, et al. Experimental and numerical studies of foam-filled sections[J]. International Journal of Impact Engineering, 2000, 24(5): 509-534.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  28
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-22
  • 修回日期:  2024-05-15
  • 刊出日期:  2025-02-01

目录

    /

    返回文章
    返回