留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构非Gauss随机响应分析的混沌响应面法研究

李朝阳 许玉佼 杨绿峰

李朝阳, 许玉佼, 杨绿峰. 结构非Gauss随机响应分析的混沌响应面法研究[J]. 应用数学和力学, 2025, 46(7): 855-866. doi: 10.21656/1000-0887.450093
引用本文: 李朝阳, 许玉佼, 杨绿峰. 结构非Gauss随机响应分析的混沌响应面法研究[J]. 应用数学和力学, 2025, 46(7): 855-866. doi: 10.21656/1000-0887.450093
LI Zhaoyang, XU Yujiao, YANG Lufeng. A Chaotic Response Surface Method for Non-Gaussian Stochastic Analysis of Structural Responses[J]. Applied Mathematics and Mechanics, 2025, 46(7): 855-866. doi: 10.21656/1000-0887.450093
Citation: LI Zhaoyang, XU Yujiao, YANG Lufeng. A Chaotic Response Surface Method for Non-Gaussian Stochastic Analysis of Structural Responses[J]. Applied Mathematics and Mechanics, 2025, 46(7): 855-866. doi: 10.21656/1000-0887.450093

结构非Gauss随机响应分析的混沌响应面法研究

doi: 10.21656/1000-0887.450093
基金项目: 

国家自然科学基金(重点项目) 51738004

广西科技计划项目 桂科AD23026265

详细信息
    作者简介:

    李朝阳(1985—),男,副教授,博士(E-mail: lizhaoyang_gx@foxmail.com)

    许玉佼(1998—),女,硕士(E-mail: 980262276@qq.com)

    通讯作者:

    杨绿峰(1966—),男,教授,博士,博士生导师(通讯作者. E-mail: lfyang@gxu.edu.cn)

  • 中图分类号: TU311.4

A Chaotic Response Surface Method for Non-Gaussian Stochastic Analysis of Structural Responses

  • 摘要: 传统响应面法应用于非Gauss随机结构时影响计算效率和精度. 为此,提出了非Gauss响应量分析的混沌响应面法. 首先根据随机变量的概率分布类型构造了混合型广义混沌多项式,据此建立了非Gauss响应量的随机展开式;利用高阶一维广义混沌多项式的根构造了非Gauss基本随机变量空间的概率配点,并基于系数矩阵行满秩原则遴选非Gauss随机变量空间的最优概率配点;进而利用最小二乘法确定了响应面的待定系数,据此建立了非Gauss响应面的广义混沌表达式. 最后,通过对比分析,验证了混沌响应面法能够以较少的配点、较低的展开阶次取得更高的计算精度和效率.
  • 图  1  F1的均值和标准差

    Figure  1.  Means and standard deviations of F1

    图  2  F2的均值和标准差

    Figure  2.  Means and standard deviations of F2

    图  3  F3的均值和标准差

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Means and standard deviations of F3

    图  4  F4的均值和标准差

    Figure  4.  Means and standard deviations of F4

    图  5  桁架计算简图

    Figure  5.  Schematic diagram of the truss

    图  6  竖向位移v3的统计特征值

    Figure  6.  Statistical parameters of vertical displacement v3

    图  7  竖向位移v3的概率密度函数

    Figure  7.  Probability density functions of vertical displacement v3

    图  8  5层3跨框架的计算图

    Figure  8.  The sketch of a 5-story and 3-bay frame

    图  9  不同变异系数下的顶层梁水平位移的统计特征值

    Figure  9.  Statistical parameters of the horizontal displacement at the top floor with different coefficients of variation

    表  1  对应不同概率分布类型的广义混沌多项式

    Table  1.   Generalized polynomial chaos for different probabilistic distributions

    distribution generalized polynomial chaos weight function domain
    Gauss Hermite $(1 / \sqrt{2 {\rm{\mathsf{π}}}}) \mathrm{e}^{-\xi^2 / 2}$ (-∞,+∞)
    uniform Legendre 1 [-1, 1]
    beta Jacobi (1+ξ)β(1-ξ)α [-1, 1]
    exponential Laguerre eξ [0,+∞)
    Gamma generalized Laguerre ξαeξ [0,+∞)
    下载: 导出CSV

    表  2  2维3阶广义混沌多项式

    Table  2.   The mixed generalized polynomial chaos (m=2, p=3)

    Ψ3(ξ1, ξ2) α=(α1, α2)
    H3(ξ1)L0(ξ2)=(ξ13-3ξ1)×1 (3, 0)
    H2(ξ1)L1(ξ2)=(ξ12-1)×ξ2 (2, 1)
    $H_1\left(\xi_1\right) L_2\left(\xi_2\right)=\xi_1 \times \frac{1}{2}\left(3 \xi_2^2-1\right)$ (1, 2)
    $H_0\left(\xi_1\right) L_3\left(\xi_2\right)=1 \times \frac{1}{2}\left(5 \xi_2^3-3 \xi_2\right)$ (0, 3)
    下载: 导出CSV

    表  3  CRSM与HRSM计算功能函数F2的结果

    Table  3.   Results of the CRSM and the HRSM for F2

    method total probability collocation point optimal probability collocation point
    mean standard
    deviation
    collocation
    point number
    mean standard
    deviation
    collocation
    point number
    MCS 3.444 5×103 2.598 7×103 103 - - -
    HRSM2 3.211 2×103 2.656 3×103 9 3.195 5×103 2.648 8×103 6
    HRSM3 3.548 6×103 2.501 9×103 16 3.534 0×103 2.488 9×103 10
    HRSM4 3.411 9×103 2.682 1×103 25 3.410 7×103 2.676 2×103 15
    HRSM5 3.457 0×103 2.539 5×103 36 3.454 1×103 2.538 7×103 21
    HRSM6 3.445 4×103 2.639 2×103 49 3.445 3×103 2.639 6×103 28
    CRSM2 3.445 1×103 2.588 8×103 9 3.445 1×103 2.588 8×103 6
    CRSM3 3.444 3×103 2.592 6×103 16 3.444 3×103 2.592 6×103 10
    下载: 导出CSV

    表  4  随机变量的统计特性

    Table  4.   Statistical characteristics of random variables

    random variable distribution mean coefficient of variation
    Eb Gauss 20 GPa 0.15
    Ec Gauss 22 GPa 0.15
    P1 beta 10 kN 0.15
    P2 beta 100 kN 0.15
    q uniform 8.0 N/m 0.15
    下载: 导出CSV

    表  5  顶层水平位移u的统计特征值

    Table  5.   Statistical parameters of horizontal displacement at top floor

    method total probability collocation point optimal probability collocation point
    mean/m standard
    deviation/m
    collocation
    point number
    mean/m standard
    deviation/m
    collocation
    point number
    MCS 5.472 5×10-3 1.040 9×10-3 105 - - -
    HRSM2 5.473 3×10-3 9.000 4×10-4 243 5.480 8×10-3 8.878 8×10-4 21
    HRSM3 5.474 7×10-3 1.144 3×10-3 1 024 5.459 4×10-3 1.134 1×10-3 56
    HRSM4 5.478 5×10-3 9.934 5×10-4 3 125 5.477 6×10-3 9.783 1×10-4 126
    HRSM5 5.476 2×10-3 1.082 1×10-3 7 776 5.477 8×10-3 1.083 2×10-3 252
    CRSM2 5.471 9×10-3 1.052 4×10-3 243 5.471 9×10-3 1.024 0×10-3 21
    CRSM3 5.472 2×10-3 1.040 7×10-3 1 024 5.473 9×10-3 1.041 5×10-3 56
    下载: 导出CSV
  • [1] ZHAO Z, LU Z H, ZHAO Y G. Simulating multivariate stationary non-Gaussian process based on wavenumber-frequency spectrum and unified Hermite polynomial model[J]. Probabilistic Engineering Mechanics, 2022, 69: 103272.
    [2] GHANEM R G, SPANOS P D. Spectral stochastic finite-element formulation for reliability analysis[J]. Journal of Engineering Mechanics, 1991, 117(10): 2351-2372.
    [3] LU N, LI Y F, HUANG H Z, et al. AGP-MCS+D: an active learning reliability analysis method combining dependent Gaussian process and Monte Carlo simulation[J]. Reliability Engineering & System Safety, 2023, 240: 109541.
    [4] LI X, GONGC L, GU L X, et al. A sequential surrogate method for reliability analysis based on radial basis function[J]. Structural Safety, 2018, 73: 42-53.
    [5] LI J, CHEN J. Stochastic Dynamics of Structures[M]. New York: John Wiley & Sons, 2009.
    [6] CHENG H, YANG D X. Direct probability integral method for stochastic response analysis of static and dynamic structural systems[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357: 112612.
    [7] BUCHER C G, BOURGUND U. A fast and efficient response surface approach for structural reliability problems[J]. Structural Safety, 1990, 7(1): 57-66.
    [8] ISUKAPALLI S S, ROY A, GEORGOPOULOS P G. Stochastic response surface methods (SRSMs) for uncertainty propagation: application to environmental and biological systems[J]. Risk Analysis, 1998, 18(3): 351-363.
    [9] HAMPTON J, DOOSTAN A. Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies[J]. Journal of Computational Physics, 2015, 280: 363-386.
    [10] SU G, YU B, XIAO Y, et al. Gaussian process machine-learning method for structural reliability analysis[J]. Advances in Structural Engineering, 2014, 17(9): 1257-1270.
    [11] DENG J, GU D, LI X, et al. Structural reliability analysis for implicit performance functions using artificial neural network[J]. Structural Safety, 2005, 27(1): 25-48.
    [12] 陶然, 周焕林, 孟增, 等. 基于响应面法和改进算术优化算法的抱杆优化设计[J]. 应用数学和力学, 2022, 43(10): 1113-1122. doi: 10.21656/1000-0887.420318

    TAO Ran, ZHOU Huanlin, MENG Zeng, et al. Optimization design of holding poles based on the response surface methodology and the improved arithmetic optimization algorithm[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1113-1122. (in Chinese) doi: 10.21656/1000-0887.420318
    [13] 王涵, 史治宇. 最优阶次多项式响应面法及其在模型修正中的应用[J]. 机械制造与自动化, 2021, 50(6): 93-98.

    WANG Han, SHI Zhiyu. Construction of response surface with optimal order polynomial and its application in FEM updating[J]. Machine Building & Automation, 2021, 50(6): 93-98. (in Chinese)
    [14] HUANG S, MAHADEVAN S, REBBA R. Collocation-based stochastic finite element analysis for random field problems[J]. Probabilistic Engineering Mechanics, 2007, 22(2): 194-205.
    [15] LI D Q, CHEN Y F, LU W B, et al. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables[J]. Computers and Geotechnics, 2011, 38(1): 58-68.
    [16] XIU D, EM KARNIADAKIS G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644.
    [17] JAKEMAN J D, FRANZELIN F, NARAYAN A, et al. Polynomial chaos expansions for dependent random variables[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 351: 643-666.
    [18] 姜昌伟, 刘星, 石尔, 等. 基于嵌入式多项式混沌展开法的随机边界下流动与传热问题不确定性量化[J]. 应用数学和力学, 2021, 42(5): 481-491. doi: 10.21656/1000-0887.410217

    JIANG Changwei, LIU Xing, SHI Er, et al. Uncertainty quantification of flow and heat transfer problems with stochastic boundary conditions based on the intrusive polynomial chaos expansion method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 481-491. (in Chinese) doi: 10.21656/1000-0887.410217
    [19] SUDRET B. Global sensitivity analysis using polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2008, 93(7): 964-979.
    [20] CHENG K, LU Z Z. Adaptive sparse polynomial chaos expansions for global sensitivity analysis based on support vector regression[J]. Computers & Structures, 2018, 194: 86-96.
    [21] 吕大刚. 基于线性化Nataf变换的一次可靠度方法[J]. 工程力学, 2007, 24(5): 79-86.

    LV Dagang. First order reliability method based on linearized Nataf transformation[J]. Engineering Mechanics, 2007, 24(5): 79-86. (in Chinese)
    [22] LU Z H, ZHAO Z, ZHANG X Y, et al. Simulating stationary non-Gaussian processes based on unified Hermite polynomial model[J]. Journal of Engineering Mechanics, 2020, 146(7): 04020067.
    [23] GAUTSCHI W. Orthogonal polynomials (in MATLAB)[J]. Journal of Computational and Applied Mathematics, 2005, 178(1/2): 215-234.
    [24] HADIGOL M, DOOSTAN A. Least squares polynomial chaos expansion: a review of sampling strategies[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 332: 382-407.
    [25] YANG L F, LI Z Y, YU B, et al. Full-space response surface method for analysis of structural reliability[J]. International Journal of Structural Stability and Dynamics, 2020, 20(8): 2050096.
    [26] LI W X, LU Z M, ZHANG D X. Stochastic analysis of unsaturated flow with probabilistic collocation method[J]. Water Resources Research, 2009, 45(8): W08425.
    [27] 蒋水华, 李典庆, 周创兵. 随机响应面法最优概率配点数目分析[J]. 计算力学学报, 2012, 29(3): 345-351.

    JIANG Shuihua, LI Dianqing, ZHOU Chuangbing. Optimal probabilistic collocation points for stochastic response surface method[J]. Chinese Journal of Computational Mechanics, 2012, 29(3): 345-351. (in Chinese)
    [28] 杨绿峰, 杨显峰, 余波, 等. 基于逐步回归分析的随机响应面法[J]. 计算力学学报, 2013, 30(1): 88-93.

    YANG Lufeng, YANG Xianfeng, YU Bo, et al. Improved stochastic response surface method based on stepwise regression analysis[J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 88-93. (in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-12-31
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回