留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略

杨佳悦 赵莹

杨佳悦, 赵莹. 基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略[J]. 应用数学和力学, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
引用本文: 杨佳悦, 赵莹. 基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略[J]. 应用数学和力学, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
YANG Jiayue, ZHAO Ying. Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096
Citation: YANG Jiayue, ZHAO Ying. Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 324-339. doi: 10.21656/1000-0887.450096

基于相场法的固态电解质内锂枝晶生长的形貌调控及抑制策略

doi: 10.21656/1000-0887.450096
基金项目: 

国家自然科学基金青年科学基金(12102305)

详细信息
    作者简介:

    杨佳悦(2000—),女,硕士(Email: yangjiayue0307@163.com);赵莹(1988—),女,特聘研究员,博士生导师(通讯作者. E-mail: 19531@tongji.edu.cn).

    通讯作者:

    赵莹(1988—),女,特聘研究员,博士生导师(通讯作者. E-mail: 19531@tongji.edu.cn).

  • 中图分类号: O34

Morphology Control and Suppression of Lithium Dendrite Growth in Solid-State Electrolytes Based on Phase-Field Simulation

  • 摘要: 传统液态电解质的易燃易爆性带来的安全隐患,推动了基于固态电解质系统的全固态锂电池开发.然而,锂枝晶生长问题仍然是阻碍固态锂电池商业化应用的一个亟待解决的关键难题.因此,深入探究固态电解质内锂枝晶生长的形貌调控机制及抑制策略,对于提高固态锂电池的循环寿命并推动其广泛应用至关重要.该工作基于相场法,通过构建力电化学的多场耦合模型,动态地演示了锂枝晶生长形貌及其力学行为,并探讨了模型参数/条件对锂枝晶形貌的调控和抑制作用.结果表明:低水平的界面反应率系数能有效减缓锂枝晶的生长速度,同时还极大地降低了其根部承受大机械应力的范围;通过改变固态电解质材料内锂离子的各向异性扩散程度,可以实现枝晶形貌从纤维状到扁平状的转变;多晶成核对于晶间相互靠近的侧枝具有抑制作用,最高应力为单晶成核的3~5倍;高弹性模量的固态电解质对于锂枝晶生长有显著的力学抑制作用.该研究有望为固态电解质的优化设计以抑制固态锂金属电池的枝晶生长提供参考.
  • [2]CHEN Y, YUAN X, HE C, et al. Mechanistic exploration of dendrite growth and inhibition for lithium metal batteries[J].Energies,2023,16(9): 3745.
    XU R C, XIA X H, ZHANG S Z, et al. Interfacial challenges and progress for inorganic all-solid-state lithium batteries[J].Electrochimica Acta,2018,284: 177-187.
    [3]ZHAO Y, STEIN P, BAI Y, et al. A review on modeling of electro-chemo-mechanics in lithium-ion batteries[J].Journal of Power Sources,2019,413: 259-283.
    [4]TIAN J, CHEN Z, ZHAO Y. Review on modeling for chemo-mechanical behavior at interfaces of all-solid-state lithium-ion batteries and beyond[J].ACS Omega,2022,7(8): 6455-6462.
    [5]LIN R, HE Y, WANG C, et al. Characterization of the structure and chemistry of the solid-electrolyte interface by cryo-EM leads to high-performance solid-state Li-metal batteries[J].Nature Nanotechnology,2022,17(7): 768-776.
    [6]GOLOZAR M, PAOLELLA A, DEMERS H, et al. In situ observation of solid electrolyte interphase evolution in a lithium metal battery[J].Communications Chemistry,2019,2: 131.
    [7]CHANG H J, TREASE N M, ILOTT A J, et al. Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM[J].The Journal of Physical Chemistry C,2015,119(29): 16443-16451.
    [8]杨帆, 刘彬, 方岱宁. 基于相场方法的铁基合金高温氧化与生长应力分析[J]. 应用数学和力学, 2011,32(6): 710-717.(YANG Fan, LIU Bin, FANG Daining. Analysis on high-temperature oxidation and the growth stress of iron-based alloy using phase field method[J].Applied Mathematics and Mechanics,2011,32(6): 710-717. (in Chinese))
    [9]LIANG L, QI Y, XUE F, et al. Nonlinear phase-field model for electrode-electrolyte interface evolution[J].Physical ReviewE:Statistical,Nonlinear,and Soft Matter Physics,2012,86: 051609.
    [10]LIANG L, CHEN L Q. Nonlinear phase field model for electrodeposition in electrochemical systems[J].Applied Physics Letters,2014,105(26): 263903.
    [11]CHEN L, ZHANG H W, LIANG L Y, et al. Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model[J].Journal of Power Sources,2015,300: 376-385.
    [12]YURKIV V, FOROOZAN T, RAMASUBRAMANIAN A, et al. Phase-field modeling of solid electrolyte interface (SEI) influence on Li dendritic behavior[J].Electrochimica Acta,2018,265: 609-619.
    [13]SHEN X, ZHANG R, SHI P, et al. How does external pressure shape Li dendrites in Li metal batteries?[J].Advanced Energy Materials,2021,11(10): 2003416.
    [14]TANTRATIAN K, YAN H, ELLWOOD K, et al. Unraveling the Li penetration mechanism in polycrystalline solid electrolytes[J].Advanced Energy Materials,2021,11(13): 2003417.
    [15]WANG Z, JIANG W, ZHAO Y, et al. Chemo-mechanical coupling phase-field modeling of lithium dendrite growth within solid electrolyte[J].Journal of Solid State Electrochemistry,2023,27(1): 245-253.
    [16]YANG H, WANG Z. Effects of pressure, temperature, and plasticity on lithium dendrite growth in solid-state electrolytes[J].Journal of Solid State Electrochemistry,2023,27(10): 2607-2618.
    [17]WANG X, WANG B, MEYERSON M, et al. A phase-field model integrating reaction-diffusion kinetics and elasto-plastic deformation with application to lithiated selenium-doped germanium electrodes[J].International Journal of Mechanical Sciences,2018,144: 158-171.
    [18]MA H, XIONG X, GAO P, et al. Eigenstress model for electrochemistry of solid surfaces[J].Scientific Reports,2016,6: 26897.
    [19]SARKAR S, AQUINO W. Changes in electrodic reaction rates due to elastic stress and stress-induced surface patterns[J].Electrochimica Acta,2013,111: 814-822.
    [20]ALLEN S M, CAHN J W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening[J].Acta Metallurgica,1979,27(6): 1085-1095.
    [21]UE M, SAKAUSHI K, UOSAKI K. Basic knowledge in battery research bridging the gap between academia and industry[J].Materials Horizons,2020,7(8): 1937-1954.
    [22]GAO L, GUO Z. Phase-field simulation of Li dendrites with multiple parameters influence[J].Computational Materials Science,2020,183: 109919.
    [23]WANG Y, DANG D, WANG M, et al. Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation[J].Applied Physics Letters,2019,115(4): 043903.
    [24]NGUYEN Q D, OH E S, CHUNG K H. Nanomechanical properties of polymer binders for Li-ion batteries probed with colloidal probe atomic force microscopy[J].Polymer Testing,2019,76: 245-253.
    [25]SAMSONOV G V, STRAUMANIS M E. Handbook of the physicochemical properties of the elements[J].Physics Today,1968,21(9): 97.
    [26]NARAYAN S, ANAND L. A large deformation elastic-viscoplastic model for lithium[J].Extreme Mechanics Letters,2018,24: 21-29.
    [27]GOLOZAR M, PAOLELLA A, DEMERS H, et al. Direct observation of lithium metal dendrites with ceramic solid electrolyte[J].Scientific Reports,2020,10(1): 18410.
    [28]LUO S, WANG Z, LI X, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes[J].Nature Communications,2021,12(1): 6968.
    [29]JOHAN M R, JIMSON S A, GHAZALI N, et al. Structural, thermal, electrical and mechanical properties of nanosilica-composite polymer electrolytes[J].International Journal of Materials Research,2011,102(4): 413-419.
    [30]DA COSTA H M, RAMOS V D, DE OLIVEIRA M G. Degradation of polypropylene (PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance[J].Polymer Testing,2007,26(5): 676-684.
  • 加载中
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-12
  • 修回日期:  2024-05-15
  • 网络出版日期:  2025-04-02
  • 刊出日期:  2025-03-01

目录

    /

    返回文章
    返回