留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑挠曲电效应的薄板声学超材料隔声特性研究

杨莎莎 彭聪 孟晗 沈承

杨莎莎, 彭聪, 孟晗, 沈承. 考虑挠曲电效应的薄板声学超材料隔声特性研究[J]. 应用数学和力学, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115
引用本文: 杨莎莎, 彭聪, 孟晗, 沈承. 考虑挠曲电效应的薄板声学超材料隔声特性研究[J]. 应用数学和力学, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115
YANG Shasha, PENG Cong, MENG Han, SHEN Cheng. Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115
Citation: YANG Shasha, PENG Cong, MENG Han, SHEN Cheng. Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects[J]. Applied Mathematics and Mechanics, 2024, 45(8): 1070-1081. doi: 10.21656/1000-0887.450115

考虑挠曲电效应的薄板声学超材料隔声特性研究

doi: 10.21656/1000-0887.450115
(我刊青年编委孟晗来稿)
基金项目: 

国家自然科学基金 12202183

国家重点研发计划 2023YFB4604800

详细信息
    作者简介:

    杨莎莎(1986—),女,讲师,博士(E-mail: 2016100849@niit.edu.cn)

    通讯作者:

    沈承(1986—),男,副教授,博士(通讯作者. E-mail: cshen@nuaa.edu.cn)

  • 中图分类号: O32

Study on Sound Insulation Characteristics of Thin Plate Acoustic Metamaterials With Flexoelectric Effects

(Contributed by MENG Han, M.AMM Youth Editorial Board)
  • 摘要: 区别于传统的压电效应,当结构尺寸减小到微纳米尺度时,一种新的力电耦合效应——挠曲电效应将无法被忽略. 该文利用变分原理推导了考虑挠曲电效应的薄板声学超材料结构隔声问题的控制方程和边界条件,基于Kirchhoff薄板理论预测了薄板质量块结构的隔声曲线,系统讨论了挠曲电效应、几何尺寸、质量密度等参数对结构隔声性能的影响. 结果表明,当结构尺寸减小到微纳米尺度时,挠曲电效应显著增加了隔声曲线的隔声谷值和峰值频率,因此考虑挠曲电效应是十分有必要的. 该文的工作有望为微机电系统的噪声控制研究提供理论基础.
    1)  (我刊青年编委孟晗来稿)
  • 图  1  附加薄板质量块结构示意图

    Figure  1.  The additional sheet mass block structure diagram

    图  2  薄板质量块结构平面示意图

    Figure  2.  Structural plane diagram of the sheet mass block

    图  3  考虑挠曲电效应与经典理论的隔声曲线对比

    Figure  3.  The sound insulation curve of the flexural effect is compared with that of the classical theory

    图  4  第一隔声谷/峰值频率随薄板边长/厚度的变化曲线

    Figure  4.  The 1st sound insulation valley/peak frequency curves with the sheet side length/thickness

    图  5  薄板尺寸对隔声曲线的影响

    Figure  5.  Influences of sheet sizes on sound insulation curves

    图  6  薄板面密度对隔声曲线的影响

    Figure  6.  Effects of thin plate surface densities on sound insulation curves

    图  7  质量块面密度对隔声曲线的影响

    Figure  7.  Influences of mass block surface densities on sound insulation curves

    图  8  质量块大小对隔声曲线的影响

    Figure  8.  Influences of mass block sizes on sound insulation curves

    表  1  薄板质量块材料参数和结构参数[16]

    Table  1.   Material and structural parameters of the sheet mass block[16]

    parameter value
    plate length Lx=500 nm
    plate width Ly=500 nm
    plate density ρs=7 500 kg/m3
    plate thickness hs=10 nm
    mass block length lx=50 nm
    mass block width ly=50 nm
    mass block density ρmass=7 550 kg/m3
    mass block thickness hmass=100 nm
    elasticity modulus c11=c22=1.26×1011 N/m2, c12=7.95×1010 N/m2, c66=2.325×1010 N/m2
    piezoelectric coefficient e311=e322=-6.5 C/m2
    flexoelectricity coefficient f3113=f3223=1×10-7 C/m
    dielectric constant a33=1.302×10-8 C/(V·m)
    下载: 导出CSV
  • [1] 田源, 葛浩, 卢明辉, 等. 声学超构材料及其物理效应的研究进展[J]. 物理学报, 2019, 68(19): 194301. doi: 10.7498/aps.68.20190850

    TIAN Yuan, GE Hao, LU Minghui, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19): 194301. (in Chinese) doi: 10.7498/aps.68.20190850
    [2] MA G, YANG M, YANG Z, et al. Low-frequency narrow-band acoustic filter with large orifice[J]. Applied Physics Letters, 2013, 103(1): 011903. doi: 10.1063/1.4812974
    [3] PARK J J, KWAK J H, SONG K. Ultraslow medium with an acoustic membrane-like undamped dynamic vibration absorber for low-frequency isolation[J]. Extreme Mechanics Letters, 2021, 43: 101203. doi: 10.1016/j.eml.2021.101203
    [4] YAO S, ZHOU X, HU G. Investigation of the negative-mass behaviors occurring below a cut-off frequency[J]. New Journal of Physics, 2010, 12(10): 103025. doi: 10.1088/1367-2630/12/10/103025
    [5] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency soun[J]. Nature Communications, 2012, 3: 756. doi: 10.1038/ncomms1758
    [6] KALAEE M, MIRHOSSEINI M, DIETERLE P B, et al. Quantum electromechanics of a hypersonic crystal[J]. Nature Nanotechnology, 2019, 14(4): 334-339. doi: 10.1038/s41565-019-0377-2
    [7] CUENOT S, FRÉTIGNY C, DEMOUSTIER-CHAMPAGNE S, et al. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy[J]. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(16): 165410. doi: 10.1103/PhysRevB.69.165410
    [8] WANG Z L, SONG J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. doi: 10.1126/science.1124005
    [9] WANG X, ZHOU J, SONG J, et al. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire[J]. Nano Letters, 2006, 6(12): 2768-2772. doi: 10.1021/nl061802g
    [10] JIANG X, HUANG W, ZHANG S. Flexoelectric nano-generator: materials, structures and devices[J]. Nano Energy, 2013, 2(6): 1079. doi: 10.1016/j.nanoen.2013.09.001
    [11] ZHANG Z, JIANG L. Size effects on electromechanical coupling fields of a bending piezoelectric nanoplate due to surface effects and flexoelectricity[J]. Journal of Applied Physics, 2014, 116: 134308. doi: 10.1063/1.4897367
    [12] SHEN S, HU S. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001
    [13] 王平, 黄庆安, 于虹. 纳机电系统阻尼及噪声研究进展[J]. 电子器件, 2004, 27(3): 527-532. doi: 10.3969/j.issn.1005-9490.2004.03.039

    WANG Ping, HUANG Qing'an, YU Hong. Research and ptogress of damping and noise in NEMS[J]. Chinese Journal of Electron Devices, 2004, 27(3): 527-532. (in Chinese) doi: 10.3969/j.issn.1005-9490.2004.03.039
    [14] 任树伟, 辛锋先, 卢天健. 考虑尺度效应的微平板声振耦合特性研究[J]. 中国科学: 技术科学, 2014, 44(2): 201-208.

    REN Shuwei, XIN Fengxian, LU Tianjian. Vibroacoustic characteristics of micro-plates considering scale effect[J]. Scientia Sinica: Technologica, 2014, 44(2): 201-208. (in Chinese)
    [15] 原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219.

    YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. (in Chinese)
    [16] GHORBANPOUR A A, SOLTAN A A H, HAGHPARAST E. Flexoelectric and surface effects on vibration frequencies of annular nanoplate[J]. Indian Journal of Physics, 2021, 95(10): 2063-2083. doi: 10.1007/s12648-020-01854-9
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  191
  • HTML全文浏览量:  70
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-25
  • 修回日期:  2024-06-05
  • 刊出日期:  2024-08-01

目录

    /

    返回文章
    返回