留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声波激励细胞核振动响应分析

丰玲琳 齐兵 刘少宝

丰玲琳, 齐兵, 刘少宝. 超声波激励细胞核振动响应分析[J]. 应用数学和力学, 2025, 46(7): 821-835. doi: 10.21656/1000-0887.450140
引用本文: 丰玲琳, 齐兵, 刘少宝. 超声波激励细胞核振动响应分析[J]. 应用数学和力学, 2025, 46(7): 821-835. doi: 10.21656/1000-0887.450140
FENG Linglin, QI Bing, LIU Shaobao. Vibration Dynamics for Cell Nuclei Under Ultrasonic Excitations[J]. Applied Mathematics and Mechanics, 2025, 46(7): 821-835. doi: 10.21656/1000-0887.450140
Citation: FENG Linglin, QI Bing, LIU Shaobao. Vibration Dynamics for Cell Nuclei Under Ultrasonic Excitations[J]. Applied Mathematics and Mechanics, 2025, 46(7): 821-835. doi: 10.21656/1000-0887.450140

超声波激励细胞核振动响应分析

doi: 10.21656/1000-0887.450140
(我刊编委刘少宝来稿)
基金项目: 

国家自然科学基金 12272179

国家自然科学基金 11902155

江苏省科技计划重点项目 BK20243058

详细信息
    作者简介:

    丰玲琳(2004—),女(E-mail: 3316634116@qq.com)

    通讯作者:

    刘少宝(1988—),男,副研究员,博士(通讯作者. E-mail: sbliu@nuaa.edu.cn)

  • 中图分类号: O301

Vibration Dynamics for Cell Nuclei Under Ultrasonic Excitations

(Contributed by LIU Shaobao, M.AMM Editorial Board)
  • 摘要: 超声波因其非侵入性、可精确定位、副作用小等优势在临床治疗中得到了广泛应用.近年来,利用超声波选择性激励癌细胞核振动治疗肿瘤的研究引起了学者们的关注.然而,细胞核动力学特性尤其受迫振动行为及共振机理仍不清楚.本研究建立了超声波激励下细胞核受迫振动力学模型,探究低强度超声波激励下典型具有不同细胞整体基质刚度的淋巴细胞(悬浮细胞)、胶质细胞、软骨细胞的振动响应特性.研究结果表明:超声波激励频率和强度越大,作用在细胞核上的声力也越大.超声波激励频率和强度一定时,作用在细胞核上的声力随细胞整体基质刚度减小而减小.超声波激励细胞可以引起细胞核共振,细胞整体基质刚度越大,细胞核共振频率越大.细胞核的相对振幅随细胞整体基质刚度增大而减小,淋巴细胞具有最大的共振幅度,胶质细胞次之,软骨细胞最小.该研究为超声波激励细胞核振动提供了理论分析框架,有利于推动发展基于超声波的肿瘤力学疗法.
    1)  (我刊编委刘少宝来稿)
  • 图  1  超声波激励细胞核振动力学模型

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Mechanical modeling of vibrations of a cell nucleus excited by ultrasound

    图  2  不同频率超声波激励下,细胞核所受声力的时程曲线

    Figure  2.  Time-history curves of acoustic forces on cell nucleus under ultrasonic excitations with different frequencies

    图  3  超声波激励下,细胞核振动位移时程曲线

    Figure  3.  Time-history curves of vibrational displacements of cell nuclei under ultrasonic excitations

    图  4  超声波激励下,细胞核振动速度时程曲线

    Figure  4.  Time-history curves of vibrational velocities of cell nuclei under ultrasonic excitations

    图  5  超声波激励下,细胞核振动的幅频响应曲线

    Figure  5.  Amplitude-frequency vibration responses of cell nuclei under ultrasonic excitations

    图  6  超声波声强对细胞核振动振幅的影响

    Figure  6.  Effects of ultrasonic sound intensities on the vibrational amplitudes of cell nuclei

    表  1  细胞核振动力学模型参数

    Table  1.   Parameters of the vibrational mechanics model of the nucleus

    parameter symbol value baseline
    nucleus density of glial cells ρn 1.4 g/cm3[7] 2.0 g/cm3
    cytoplasmic density of glial cells ρ 1.0 g/cm3[20] 1.0 g/cm3
    cytoplasmic shear modulus of glial cells G 100 Pa[21] 100 Pa
    spatial peak temporal average sound intensity I 10 000 W/cm2
    acoustic velocity cU 1 500 m/s[18] 1 500 m/s
    glial cell nucleus radius R 4.0 μm[22] (microglial cell in a glial scar) 4.0 μm
    lymphocyte nucleus radius R 3~6 μm 4.0 μm
    shear modulus of cytoplasm of chondrocytes G 1~5 kPa[7] 1 000 Pa
    cytoplasmic density of lymphocytes ρ 1.0 g/cm3(assumed)
    cytoplasmic shear modulus of lymphocytes G 100 Pa(assumed)
    nucleus density of chondrocytes ρn 2.0 g/cm3(assumed)
    cytoplasmic density of chondrocytes ρ 1.05~1.10 g/cm3[7] 1.0 g/cm3
    Poisson’s ratio of extracellular matrix υECM 0.3(assumed)
    Young’s modulus of extracellular matrix of glial cells EECM 0.2~1.2×102 Pa[7] 1.2×102 Pa(assumed)
    Young’s modulus of extracellular matrix of cartilage EECM 0.4~1.18×106 Pa[7] 4×105 Pa
    Young’s modulus of extracellular matrix of lymphocytes EECM 0 Pa(assumed)
    number of cytoskeletal filaments N 16 000[7] 16 000
    Young’s modulus of cytoskeletal filament Ef 2 GPa (microtubules)[23]
    2.6 GPa[23]
    1.2 GPa (microtubules)[24]
    1 GPa
    length of cytoskeleton filaments l=Rcell-R
    Young’s modulus of nucleus En rigidity 1 kPa
    critical displacement of each glial cytoskeletal filament $u_{\mathrm{cr}}=\frac{\mathtt{π}^2 d^2}{4 l}$ 2.47×10-4 μm(calculated)
    glial cell unit radius Rcell 5.0 μm (microglial cell in a glial scar)[22] 5.0 μm
    chondrocyte cell unit radius Rcell ~4.0 μm[25] 5.0 μm
    lymphocyte cell unit radius Rcell 4.65~5.85 μm[26] 5 μm
    critical displacement of each lymphocyte skeletal filament $u_{\mathrm{cr}}=\frac{\mathtt{π}^2 d^2}{4 l}$ 2.47×10-4 μm(calculated)
    cross-section diameter of cytoskeletal filament d 25 nm[27] 10 nm
    Poisson’s ratio of nucleus υn 0.3~0.5[7] 0.3
    nucleus radius of chondrocytes R ~2.5 μm[25] 4.0 μm
    critical displacement of each cytoskeletal filament of chondrocytes $u_{\mathrm{cr}}=\frac{\mathtt{π}^2 d^2}{4 l}$ 2.47×10-4 μm(calculated)
    shear modulus of extracellular matrix $G_{\mathrm{ECM}}=\frac{E_{\mathrm{ECM}}}{2\left(1+v_{\mathrm{ECM}}\right)}$
    nucleus density of lymphocytes ρn 2.0 g/cm3[28] 2.0 g/cm3
    下载: 导出CSV
  • [1] ANAND U, DEY A, CHANDEL A K S, et al. Cancer chemotherapy and beyond: current status, drug candidates, associated risks and progress in targeted therapeutics[J]. Genes Dis, 2023, 10(4): 1367-1401.
    [2] TIJORE A, MARGADANT F, YAO M X, et al. Ultrasound-mediated mechanical forces selectively kill tumor cells[J/OL]. 2020(2020-10-09)[2024-05-14]. DOI: https://doi.org/10.1101/2020.10.09.332726.
    [3] MITTELSTEIN D, YE J, SCHIBBER E F, et al. Selective ablation of cancer cells with low intensity pulsed ultrasound[J]. Applied Physice Letters, 2020(2020-10-09)[2024-05-14], 116(1): 013701.
    [4] LIU S, LI Y, HONG Y, et al. Mechanotherapy in oncology: targeting nuclear mechanics and mechanotransduction[J]. Advanced Drug Delivery Reviews, 2023, 194: 114722.
    [5] HEYDEN S, ORTIZ M. Oncotripsy: targeting cancer cells selectively via resonant harmonic excitation[J]. Journal of the Mechanics and Physics of Solids, 2016, 92: 164-175.
    [6] SCHIBBER E F, MITTELSTEIN D R, GHARIB M, et al. A dynamical model of oncotripsy by mechanical cell fatigue: selective cancer cell ablation by low-intensity pulsed ultrasound[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2236): 20190692.
    [7] LIU S, YANG H, WANG M, et al. Torsional and translational vibrations of a eukaryotic nucleus, and the prospect of vibrational mechanotransduction and therapy[J]. Journal of the Mechanics and Physics of Solids, 2021, 155: 104572.
    [8] OESTREICHER H L. Field and impedance of an oscillating sphere in a viscoelastic medium with an application to biophysics[J]. Acoustical Society of America Journal, 1951, 23(6): 707.
    [9] FRIZZELL L A, CARSTENSEN E L. Shear properties of mammalian tissues at low megahertz frequencies[J]. The Journal of the Acoustical Society of America, 1976, 60(6): 1409-1411.
    [10] ILINSKII Y A, DOUGLAS MEEGAN G, ZABOLOTSKAYA E A, et al. Gas bubble and solid sphere motion in elastic media in response to acoustic radiation force[J]. Journal of the Acoustical Society of America, 2005, 117(4 Pt 1): 2338-2346.
    [11] SURESH S. Biomechanics and biophysics of cancer cells[J]. Acta Biomaterialia, 2007, 3(4): 413-438.
    [12] QI Bing, LIN Shujuan, GUO Yaohua, et al. Local resonance of mechanosensitive channels[J]. Journal of the Mechanics and Physics of Solids, 2025, 203: 106249.
    [13] LOVE A E H. The stress produced in a semi-infinite solid by pressure on part of the boundary[J]. Philosophical Transactions of the Royal Society of London (Series A): Containing Papers of a Mathematical or Physical Character, 1929, 228: 377-420.
    [14] JOHNSON K L. Contact Mechanics[M]. Cambridge: Cambridge University Press, 1987.
    [15] MAXEY M R, RILEY J J. Equation of motion for a small rigid sphere in a nonuniform flow[J]. Physics of Fluids, 1983, 26(4): 883-889.
    [16] WANG Q, RIAUD A, ZHOU J, et al. Acoustic radiation force on small spheres due to transient acoustic fields[J]. Physical Review Applied, 2021, 15(4): 044034.
    [17] OR M, KIMMEL E. Modeling linear vibration of cell nucleus in low intensity ultrasound field[J]. Ultrasound in Medicine & Biology, 2009, 35(6): 1015-1025.
    [18] LANDAU L D, LIFSHITZ E M. Fluid Mechanics[M]. Oxford: Pergamon, 1987.
    [19] 范惠康, 尤一龙, 尤凤翔. 弹簧振子非线性振动动力响应分析[J]. 民营科技, 2012(10): 52-54.

    FAN Huikang, YOU Yilong, YOU Fengxiang. Dynamic response analysis of nonlinear vibration of spring oscillator[J]. Private Science and Technolog, 2012(10): 52-54. (in Chinese)
    [20] 郝卓芳, 罗欣鸣, 黄世章, 等. 星形细胞瘤瘤细胞核的密度参数和形状参数的分析[J]. 广州医学院学报, 1993, 21(1): 22-25.

    HAO Zhuofang, LUO Xinming, HUANG Shizhang, et al. Analysis of density and shape parameters of tumor cell nuclei in astrocytoma[J]. Academic Journal of Guangzhou Medical College, 1993, 21(1): 22-25. (in Chinese)
    [21] LIM C T, DAO M, SURESH S, et al. Large deformation of living cells using laser traps[J]. Acta Materialia, 2004, 52(7): 1837-1845.
    [22] MOSHAYEDI P, NG G, KWOK J C F, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system[J]. Biomaterials, 2014, 35(13): 3919-3925.
    [23] CAILLE N, THOUMINE O, TARDY Y, et al. Contribution of the nucleus to the mechanical properties of endothelial cells[J]. Journal of Biomechanics, 2002, 35(2): 177-187.
    [24] KARDAS D, NACKENHORST U, BALZANI D. Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures[J]. Biomechanics and Modeling in Mechanobiology, 2013, 12(1): 167-183.
    [25] LEIPZIG N D, ATHANASIOU K A. Static compression of single chondrocytes catabolically modifies single-cell gene expression[J]. Biophysical Journal, 2008, 94(6): 2412-2422.
    [26] ROZMAN C, MIONTSERRAT E, FELIU E, et al. Lymphocyte size and survival of patients with chronic lymphocytic leukaemia (B-type)[J]. Scandinavian Journal of Haematology, 1980, 24(4): 315-320.
    [27] WADE R H. On and around microtubules: an overview[J]. Molecular Biotechnology, 2009, 43(2): 177-191.
    [28] BIRNIE G D. Subnuclear Components: Preparation and Fractionation[M]. London: Butterworths, 1976.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-14
  • 修回日期:  2024-05-19
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回