Oblique Stagnation Point Slip Flow of Unsteady Maxwell Fluid on an Oscillating-Rotating Disk in Porous Medium
-
摘要:
研究了多孔介质中Maxwell流体在具有振荡速度的旋转圆盘上的非稳态斜驻点流动问题. 首先,考虑了流体的滑移效应,利用改进的Darcy-Maxwell本构关系和斜驻点流动特征建立了多孔介质中的非稳态流动模型,并通过求解常微分方程对压强项进行了修正. 接着,利用合理的相似变换将控制方程转化为耦合的无量纲偏微分方程组,用同伦分析方法首次得到了模型的近似解析解. 最后,绘制了随圆盘转速变化的二维流线图、在不同倾斜参数下的三维流线图、不同振幅下随时间变化的速度图,以及速度随其他参数变化的图形. 结果表明:Deborah数的增加使流体受离心力影响加大,流动加速;Darcy参数增大导致了多孔介质的孔隙增多,流速增加;增大滑移参数,一方面会减小圆盘附近流体受到的阻碍,促进流体流动,另一方面会减小离心力对远离圆盘的流体的影响,减缓流体流动. 这些结果为旋转涂层、薄膜制备等相关领域的进一步研究提供了理论指导.
Abstract:The unsteady oblique stagnation point flow of the Maxwell fluid over a rotating disk with an oscillatory velocity in porous medium, was investigated. To accurately model the unsteady flow in the porous medium, an advanced formulation of the Darcy-Maxwell constitutive relation was adopted, in view of the characteristics of the oblique stagnation flow. Furthermore, the slip effect of the fluid was considered, and the pressure term was modified through solution of related ordinary differential equations. Then, the similarity transformation was employed, to change the governing equations into a coupled set of dimensionless partial differential equations. With the homotopy analysis method, an approximate analytical solution to the problem was obtained for the first time. Finally, comprehensive visualizations of the flow dynamics were presented, including 2D streamlines varying with the disk rotational speed and 3D streamlines under varying inclination parameters. Additionally, velocity profiles over time for different amplitudes were plotted, and graphs illustrating the intricate dependence of the velocity on various parameters were provided. The results show that, the augmentation of the Deborah number magnifies the centrifugal force effect and accelerates the flow. The growth of the Darcy parameter causes a concomitant rise of porosity and a higher flow velocity. The increase of the slip parameter, on the one hand, leads to a reduction in the impedance exerted by the wall to the fluid in its vicinity, resulting in an acceleration of the flow, on the other hand, mitigates the impact of centrifugal force on the fluid farther away from the wall, consequently inducing a deceleration of the flow. The research enhances the understanding of the oblique stagnation flow phenomena and provides a foundation for further research in related fields such as spin coating and thin-film preparation.
-
表 1 f″(0)对比结果
Table 1. Comparison results of f″(0)
表 2 g′(0)对比结果
Table 2. Comparison results of g′(0)
-
[1] 张晟庭, 李靖, 陈掌星, 等. 液桥的动态界面特性对液-液自发渗吸的影响研究[J]. 力学学报, 2024, 56(4): 258-272.ZHANG Shengting, LI Jing, CHEN Zhangxing, et al. Study on the effect of dynamic interfacial properties of liquid bridges on spontaneous liquid-liquid imbibition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(4): 258-272. (in Chinese) [2] 李树光, 曲凯. 多孔介质中单相气体局部流动的均质化建模[J]. 应用数学和力学, 2024, 45(2): 175-183. doi: 10.21656/1000-0887.440246LI Shuguang, QU Kai. Homogenization modeling of single-phase gas local flow in porous media[J]. Applied Mathematics and Mechanics, 2024, 45(2): 175-183. (in Chinese) doi: 10.21656/1000-0887.440246 [3] 何树, 娄钦. 多孔介质孔隙率对池沸腾传热性能影响机理的模拟研究[J]. 应用数学和力学, 2024, 45(3): 348-364. doi: 10.21656/1000-0887.440212HE Shu, LOU Qin. Simulation study of porosity effects of porous media on pool boiling heat transfer performances[J]. Applied Mathematics and Mechanics, 2024, 45(3): 348-364. (in Chinese) doi: 10.21656/1000-0887.440212 [4] 钟会影, 史博文, 毕永斌, 等. 黏弹性聚合物驱渗流机理研究进展[J]. 力学学报, 2024, 56(3): 847-861.ZHONG Huiying, SHI Bowen, BI Yongbin, et al. Flow mechanism of viscoelastic polymer flooding: state of the art review and outlook[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(3): 847-861. (in Chinese) [5] LIU J, WANG S, ZHAO M, et al. Dynamic response of Maxwell fluid in an elastic cylindrical tube[J]. Physics of Fluids, 2022, 34(7): 073109. doi: 10.1063/5.0100887 [6] BAI Y, FANG H, ZHANG Y. Entropy generation analysis on unsteady flow of Maxwell nanofluid over the stretched wedge with Cattaneo-Christov double diffusion[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(6): 2198-2220. [7] 方芳, 鲍麟, 童秉纲. 基于斜驻点模型的剪切层撞击壁面流动及传热特性[J]. 物理学报, 2020, 69(21): 270-280.FANG Fang, BAO Lin, TONG Binggang. Heat transfer characteristics of shear layer impinging on wall based on oblique stagnation-point model[J]. Acta Physica Sinica, 2020, 69(21): 270-280. (in Chinese) [8] LABROPULU F, LI D, POP I. Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer[J]. International Journal of Thermal Sciences, 2010, 49(6): 1042-1050. doi: 10.1016/j.ijthermalsci.2009.12.005 [9] STUART J T. The viscous flow near a stagnation point when the external flow has uniform vorticity[J]. Journal of the Aerospace Sciences, 1959, 26(2): 124-125. doi: 10.2514/8.7963 [10] TAMADA. Two-dimensional stagnation-point flow impinging obliquely on a plane wall[J]. Journal of the Physical Society of Japan, 1979, 46(1): 310-311. doi: 10.1143/JPSJ.46.310 [11] GHAFFARI A, JAVED T, HSIAO K L. Heat transfer analysis of unsteady oblique stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscillating-stretching surface: a numerical approach[J]. Journal of Molecular Liquids, 2016, 219: 748-755. doi: 10.1016/j.molliq.2016.04.014 [12] NADEEM S, RIAZ KHAN M, KHAN A U. MHD oblique stagnation point flow of nanofluid over an oscillatory stretching/shrinking sheet: existence of dual solutions[J]. Physica Scripta, 2019, 94(7): 075204. doi: 10.1088/1402-4896/ab0973 [13] KHAN A U, NADEEM S, HUSSAIN S T. Phase flow study of MHD nanofluid with slip effects on oscillatory oblique stagnation point flow in view of inclined magnetic field[J]. Journal of Molecular Liquids, 2016, 224: 1210-1219. doi: 10.1016/j.molliq.2016.10.102 [14] NAGANTHRAN K, NAZAR R, POP I. Stability analysis of impinging oblique stagnation-point flow over a permeable shrinking surface in a viscoelastic fluid[J]. International Journal of Mechanical Sciences, 2017, 131: 663-671. [15] NGUYEN M N, SAJJAD T, LE T H, et al. Modified Chebyshev wavelets approach for mixed convection flow due to oblique stagnation point along a vertically moving surface with zero mass flux of nanoparticles[J]. Journal of Molecular Liquids, 2021, 343: 117569. doi: 10.1016/j.molliq.2021.117569 [16] GIANTESIO G, VERNA A, RO CA N C, et al. MHD mixed convection oblique stagnation-point flow on a vertical plate[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2017, 27(12): 2744-2767. [17] BAI Y, TANG Q, ZHANG Y. Unsteady inclined stagnation point flow and thermal transmission of Maxwell fluid on a stretched/contracted plate with modified pressure field[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2022, 32(12): 3824-3847. [18] 白羽, 唐巧丽, 张艳. Chebyshev谱方法研究非稳态Maxwell流体在轴向余弦振荡圆柱上的斜驻点流动[J]. 应用数学和力学, 2023, 44(10): 1226-1235. doi: 10.21656/1000-0887.430361BAI Yu, TANG Qiaoli, ZHANG Yan. A Chebyshev spectral method for the unsteady Maxwell oblique stationary point flow on an axially cosine oscillating cylinder[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1226-1235. (in Chinese) doi: 10.21656/1000-0887.430361 [19] 陈文芳, 蔡扶时, 许元泽. Casson流体在旋转圆盘上的流动[J]. 力学学报, 1987, 19(2): 111-117.CHEN Wenfang, CAI Fushi, XU Yuanze. Flow of Casson fluid on a rotating disk[J]. Acta Mechanica Sinica, 1987, 19(2): 111-117. (in Chinese) [20] 范椿, 陈耀松. Bingham流体在旋转圆盘上流动的数值解[J]. 力学学报, 1995, 27(S1): 14-19.FAN Chun, CHEN Yaosong. Numerical solution of the flow of a Bingham fluid on a rotating DlSK[J]. Acta Mechanica Sinica, 1995, 27(S1): 14-19. (in Chinese) [21] VON KÁRMÁN T. Vber laminare und turbulente reibung[J]. ZAMM Journal of Applied Mathematics and Mechanics, 1921, 1(4): 233-252. doi: 10.1002/zamm.19210010401 [22] 明春英, 郑连存, 张欣欣. 幂律流体在旋转盘上的流动与传热数值分析[J]. 北京科技大学学报, 2011, 33(9): 1166-1170.MING Chunying, ZHENG Liancun, ZHANG Xinxin. Numerical analysis of the flow and heat transfer of a power-law fluid over a rotating disk[J]. Journal of University of Science and Technology Beijing, 2011, 33(9): 1166-1170. (in Chinese) [23] DINARVAND S. On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM[J]. Nonlinear Analysis: Real World Applications, 2010, 11(5): 3389-3398. doi: 10.1016/j.nonrwa.2009.11.029 [24] VIJAY N, SHARMA K. Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation[J]. International Communications in Heat and Mass Transfer, 2023, 141: 106545. doi: 10.1016/j.icheatmasstransfer.2022.106545 [25] HAYAT T, NAWAZ M. Unsteady stagnation point flow of viscous fluid caused by an impulsively rotating disk[J]. Journal of the Taiwan Institute of Chemical Engineers, 2011, 42(1): 41-49. doi: 10.1016/j.jtice.2010.04.006 [26] AHMED A, KHAN M, AHMED J, et al. Unsteady stagnation point flow of Maxwell nanofluid over stretching disk with joule heating[J]. Arabian Journal for Science and Engineering, 2020, 45(7): 5529-5540. doi: 10.1007/s13369-020-04468-9 [27] KHAN M I, KHAN W A, WAQAS M, et al. Numerical simulation for MHD Darcy-Forchheimer three-dimensional stagnation point flow by a rotating disk with activation energy and partial slip[J]. Applied Nanoscience, 2020, 10(12): 5469-5477. doi: 10.1007/s13204-020-01517-5 [28] LOK Y Y, MERKIN J H, POP I. Axisymmetric rotational stagnation-point flow impinging on a permeable stretching/shrinking rotating disk[J]. European Journal of Mechanics B: Fluids, 2018, 72: 275-292. doi: 10.1016/j.euromechflu.2018.05.013 [29] SARKAR S, SAHOO B. Oblique stagnation flow towards a rotating disc[J]. European Journal of Mechanics B: Fluids, 2021, 85: 82-89. doi: 10.1016/j.euromechflu.2020.08.009 [30] MAHMUD K, DURAIHEM F Z, MEHMOOD R, et al. Heat transport in inclined flow towards a rotating disk under MHD[J]. Scientific Reports, 2023, 13: 5949. doi: 10.1038/s41598-023-32828-6 [31] TAN W, MASUOKA T. Stability analysis of a Maxwell fluid in a porous medium heated from below[J]. Physics Letters A, 2007, 360(3): 454-460. doi: 10.1016/j.physleta.2006.08.054 [32] WANG C Y. Off-centered stagnation flow towards a rotating disc[J]. International Journal of Engineering Science, 2008, 46(4): 391-396. doi: 10.1016/j.ijengsci.2008.01.014 -
下载:
渝公网安备50010802005915号