留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚脲弹性体动态力学行为:实验表征、微观机制及本构建模

初东阳 姚凯丽 庄茁 柳占立

初东阳, 姚凯丽, 庄茁, 柳占立. 聚脲弹性体动态力学行为:实验表征、微观机制及本构建模[J]. 应用数学和力学, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
引用本文: 初东阳, 姚凯丽, 庄茁, 柳占立. 聚脲弹性体动态力学行为:实验表征、微观机制及本构建模[J]. 应用数学和力学, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
CHU Dongyang, YAO Kaili, ZHUANG Zhuo, LIU Zhanli. Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
Citation: CHU Dongyang, YAO Kaili, ZHUANG Zhuo, LIU Zhanli. Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176

聚脲弹性体动态力学行为:实验表征、微观机制及本构建模

doi: 10.21656/1000-0887.450176
(我刊编委庄茁、柳占立来稿)
基金项目: 

国家自然科学基金 11972210

国家重点研发计划项目 2022YFC3320502

详细信息
    作者简介:

    初东阳(1993—),男,高级工程师,博士(E-mail: cdyw@foxmail.com)

    通讯作者:

    柳占立(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: liuzhanli@tsinghua.edu.cn)

  • 中图分类号: O232

Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling

(Contributed by ZHUANG Zhuo, LIU Zhanli, M.AMM Editorial Board)
  • 摘要:

    聚脲弹性体在冲击防护领域有广阔的应用前景,然而,目前对于聚脲在高压冲击、层裂等情况下的变形失效物理机制仍不明晰,尚缺乏有效描述聚脲在多种应变率及应力状态下动态变形和失效的本构及损伤模型. 针对这些挑战性问题,该文结合实验表征、分子动力学仿真以及宏观力学建模,对聚脲弹性体在不同应变率、冲击压力及应力状态下的变形失效行为进行了系统研究. 通过建立聚脲全原子和两种粗粒化模型及微结构演化分析,揭示了聚脲在高应变率拉伸、高压冲击等载荷下的变形微观物理机制,以及高应力三轴度下的动态失效物理机制. 建立了考虑强冲击下应变率-温度-压力耦合效应的聚脲弹性体本构模型,以及包括孔洞形核准则、流动法则的多种变形模式统一描述的宏观损伤模型. 经验证,所建立的宏观力学模型能够正确描述聚脲在冲击载荷下的动态变形失效行为. 该工作可为后续聚脲弹性体的优化设计及冲击防护应用提供指导.

    1)  (我刊编委庄茁、柳占立来稿)
  • 图  1  PUR1000分子链自组装示意图与AFM捕获的相图[6-7]

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Sketch of self-assembly of PUR1000 molecular chains and phase morphology of PUR1000 captured by FEM[6-7]

    图  2  聚脲合成实验装置与PUR1000聚脲样品

    Figure  2.  The experimental setup for polyurea synthesis and the samples of polyurea PUR1000

    图  3  DMA测定的PUR1000与PUR650的动态模量

    Figure  3.  Dynamic moduli of PUR1000 and PUR650 measured by DMA

    图  4  PUR1000不同大变形实验的应力-应变曲线

    Figure  4.  Stress-strain curves of PUR1000 obtained from different large-deformation experiments

    图  5  压剪盘冲击实验获得的PUR1000高压冲击特性[22]

    Figure  5.  Dynamic behaviors of PUR1000 under high pressure impact obtained from the compression-shear plate impact experiment[22]

    图  6  三种MD模型对PUR1000的建模

    Figure  6.  Modeling PUR1000 through 3 MD models

    图  7  MD模拟及AFM获得的PUR1000微相分离结构比较

    Figure  7.  Comparison of the microphase-separation structure of PUR1000 obtained by the MD modeling and AFM observation

    图  8  PUR1000有序的硬相结构

    Figure  8.  The ordered structure of the hard phase of PUR1000

    图  9  动态模量比较

    Figure  9.  Comparison of dynamic moduli

    图  10  全原子模型模拟PUR1000单轴拉伸时的各部分能量变化

    Figure  10.  Energy variations of PUR1000 under uniaxial tension simulated by the all atom model

    图  11  CGMD1模型模拟PUR1000受单轴拉伸的快照

    Figure  11.  Snapshots of PUR1000 under uniaxial tension obtained by the CGMD1 modeling

    图  12  不同冲击速度下PUR1000的分子键演化

    Figure  12.  Evolutions of molecular bonds of PUR1000 under different impact velocities

    图  13  不同冲击速度下PUR1000 f或密度随时间演化

    Figure  13.  Evolutions of f or densities of PUR1000 over time under different impact velocities

    图  14  层裂强度与局部温度关系分析

    Figure  14.  Analysis of the relationship between spallation strength and local temperature

    图  15  $\dot{e}_x=10^8$等三轴拉下的PUR1000动态损伤过程及最大主应变分布

    Figure  15.  Dynamic damage process and maximum principal strain distribution of PUR1000 under $\dot{e}_x=10^8$ equal triaxial tension

    图  16  $\dot{e}_x=10^8$等三轴拉下PUR1000软粒子体积分布

    Figure  16.  Volume distributions of soft particles of PUR1000 under $\dot{e}_x=10^8$ equal triaxial tension

    图  17  单轴应变拉伸下整体应变ex=100%时的快照

    Figure  17.  The microscopic snapshot at the moment of ex=100% under uniaxial tension

    图  18  聚脲的黏塑性本构模型示意图

    Figure  18.  Sketch of the viscoplastic constitutive model for polyurea

    图  19  本构模型模拟结果与实验结果比较

    Figure  19.  Comparison of simulation results between constitutive models and experimental results

    图  20  高压冲击下温度效应分析

    Figure  20.  Analysis of temperature effects under high-pressure impact

    图  21  $\dot{e}_{x}=10^{8}$单轴应变拉伸下,$f, \theta_{\mathrm{m}}$和$\sigma_{x x}$随$e_{x}$的变化

    Figure  21.  Variations of $f, \theta_{\mathrm{m}}$ and $\sigma_{x x}$ with $e_{x}$ under uniaxial-strain tension with $\dot{e}_{x}=10^{8}$

    图  22  考虑动态损伤失效的聚脲本构模型示意图

    Figure  22.  Sketch of the constitutive model for polyurea considering dynamic damage and failure

    图  23  孔洞形核准则的确定

    Figure  23.  Determination of the void nucleation criterion

    图  24  不同三轴度算例中不同应变数据的$\dot{\theta}_{v}-\bar{S}$图

    Figure  24.  The $\dot{\theta}_{v}-\bar{S}$ diagram of different strain states in the examples with different triaxiality

    图  25  不同三轴度算例中的临界失效点$\dot{e}_{\max }-e_{\max }$图或$\dot{\theta}-\theta$图

    Figure  25.  The $\dot{e}_{\text {max }}-e_{\text {max }}$ or $\dot{\theta}-\theta$ diagram of critical failure points in the examples with different triaxiality

    图  26  仿真与实验[64]获得的靶板自由表面速度历史

    Figure  26.  Free surface velocity histories of the target plate obtained from simulation and experiment[64]

    表  1  实验和MD模拟获得的PUR1000性能

    Table  1.   The physical parameters of PUR1000 obtained by experiments and the MD modeling

    ρ/(g/cm3) αp/K-1 cv/(J·K-1·cm-3) Tg/ ℃
    experiment 1.08 0.000 2[9] 1.977[9] -40.7
    all atom model 1.04 0.000 30 4.877 -31
    CGMD1 1.11 0.000 56 3.238 -150
    CGMD2 0.15 0.000 85 2.448 -52
    下载: 导出CSV

    表  2  各变形模式的载荷条件与应力三轴度

    Table  2.   Loading conditions and stress triaxiality for different deformation modes

    deformation mode x y z xz triaxiality
    uniaxial stress $\dot{e}_x$ σyy=0 σzz=0 exz=0 0.333
    plane stress $\dot{e}_x$ $\dot{e}_y=\dot{e}_x$ σzz=0 exz=0 0.667
    tensile-shear $\dot{e}_x$ ey=0 ez=0 $\dot{e}_{x z}=a \dot{e}_x(a=2, 3, 4)$ ~1.6~2.3
    uniaxial strain $\dot{e}_x$ ey =0 ez=0 exz=0 ~4.33
    plane strain $\dot{e}_x$ $\dot{e}_y=\dot{e}_x$ ez=0 exz=0 ~8.76
    equal triaxial tension $\dot{e}_x$ $\dot{e}_y=\dot{e}_x$ $\dot{e}_z=\dot{e}_x$ exz=0
    下载: 导出CSV

    表  3  PUR1000失效模型材料参数

    Table  3.   Material parameters of the failure model the PUR1000

    A/MPa C10/MPa m ξ0/s-1 Svoid/MPa λc
    1 200 30 0.15 5×105 320 0.3
    下载: 导出CSV
  • [1] BARSOUM R. History of high strain rate elastomeric polymers (HSREP) application[M]//BARSOUM R G. Elastomeric Polymers With High Rate Sensitivity. Amsterdam: Elsevier, 2015: 1-4.
    [2] ROLAND C M, FRAGIADAKIS D, GAMACHE R M. Elastomer-steel laminate armor[J]. Composite Structures, 2010, 92(5): 1059-1064. doi: 10.1016/j.compstruct.2009.09.057
    [3] BOGOSLOVOV R B, ROLAND C M, GAMACHE R M. Impact-induced glass transition in elastomeric coatings[J]. Applied Physics Letters, 2007, 90(22): 221910. doi: 10.1063/1.2745212
    [4] TEKALUR S A, SHUKLA A, SHIVAKUMAR K. Blast resistance of polyurea based layered composite materials[J]. Composite Structures, 2008, 84(3): 271-281. doi: 10.1016/j.compstruct.2007.08.008
    [5] CHEN C, WANG X, HOU H, et al. Effect of strength matching on failure characteristics of polyurea coated thin metal plates under localized air blast loading: experiment and numerical analysis[J]. Thin-Walled Structures, 2020, 154: 106819. doi: 10.1016/j.tws.2020.106819
    [6] LI T, ZHANG C, XIE Z, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea[J]. Polymer, 2018, 145: 261-271. doi: 10.1016/j.polymer.2018.05.003
    [7] CASTAGNA A M, PANGON A, CHOI T, et al. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas[J]. Macromolecules, 2012, 45(20): 8438-8444. doi: 10.1021/ma3016568
    [8] IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review[J]. RSC Advances, 2016, 6(111): 109706-109717. doi: 10.1039/C6RA23866A
    [9] AMIRKHIZI A V, ISAACS J, MCGEE J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine, 2006, 86(36): 5847-5866. doi: 10.1080/14786430600833198
    [10] QIAO J, AMIRKHIZI A V, SCHAAF K, et al. Dynamic mechanical and ultrasonic properties of polyurea[J]. Mechanics of Materials, 2011, 43(10): 598-607. doi: 10.1016/j.mechmat.2011.06.012
    [11] CHENG J, LIU Z L, LUO C C, et al. Revealing the high-frequency attenuation mechanism of polyurea-matrix composites[J]. Acta Mechanica Sinica, 2020, 36(1): 130-142. doi: 10.1007/s10409-019-00906-6
    [12] ROLAND C M, CASALINI R. Effect of hydrostatic pressure on the viscoelastic response of polyurea[J]. Polymer, 2007, 48(19): 5747-5752. doi: 10.1016/j.polymer.2007.07.017
    [13] CHOI T, FRAGIADAKIS D, ROLAND C M, et al. Microstructure and segmental dynamics of polyurea under uniaxial deformation[J]. Macromolecules, 2012, 45(8): 3581-3589. doi: 10.1021/ma300128d
    [14] MOTT P H, GILLER C B, FRAGIADAKIS D, et al. Deformation of polyurea: where does the energy go?[J]. Polymer, 2016, 105: 227-233. doi: 10.1016/j.polymer.2016.10.029
    [15] RINALDI R G, BOYCE M C, WEIGAND S J, et al. Microstructure evolution during tensile loading histories of a polyurea[J]. Journal of Polymer Science (Part B): Polymer Physics, 2011, 49(23): 1660-1671. doi: 10.1002/polb.22352
    [16] GONG C, CHEN Y, LI T, et al. Free volume based nonlinear viscoelastic model for polyurea over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2021, 152: 103650. doi: 10.1016/j.mechmat.2020.103650
    [17] GUO H, GUO W, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures[J]. Polymer Testing, 2016, 53: 234-244. doi: 10.1016/j.polymertesting.2016.06.004
    [18] MOTT P H, TWIGG J N, ROLAND D F, et al. High-speed tensile test instrument[J]. Review of Scientific Instruments, 2007, 78(4): 045105. doi: 10.1063/1.2719643
    [19] YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes[J]. Polymer, 2006, 47(1): 319-329. doi: 10.1016/j.polymer.2005.10.107
    [20] QI H J, BOYCE M C. Stress-strain behavior of thermoplastic polyurethanes[J]. Mechanics of Materials, 2005, 37(8): 817-839. doi: 10.1016/j.mechmat.2004.08.001
    [21] CHO H, RINALDI R G, BOYCE M C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea[J]. Soft Matter, 2013, 9(27): 6319. doi: 10.1039/c3sm27125k
    [22] CLIFTON R J, JIAO T. Pressure and strain-rate sensitivity of an elastomer: (1) pressure-shear plate impact experiments; (2) constitutive modeling[M]//BARSOUM R G. Elastomeric Polymers With High Rate Sensitivity. Amsterdam: Elsevier, 2015: 17-65.
    [23] RANSOM T C, AHART M, HEMLEY R J, et al. Acoustic properties and density of polyurea at pressure up to 13.5 GPa through Brillouin scattering spectroscopy[J]. Journal of Applied Physics, 2018, 123(19): 195102. doi: 10.1063/1.5031427
    [24] ZHU Y, LIECHTI K M, RAVI-CHANDAR K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J]. International Journal of Solids and Structures, 2009, 46(1): 31-51. doi: 10.1016/j.ijsolstr.2008.08.019
    [25] HEYDEN S, LI B, WEINBERG K, et al. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity[J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 175-195. doi: 10.1016/j.jmps.2014.08.005
    [26] CUI Z, BRINSON L C. Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers[J]. Physical Review E, 2013, 88(2): 022602. doi: 10.1103/PhysRevE.88.022602
    [27] ZHU S, LEMPESIS N, IN'T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large tensile deformation[J]. Macromolecules, 2018, 51(5): 1850-1864. doi: 10.1021/acs.macromol.7b02367
    [28] ZHU S, LEMPESIS N, IN'T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large compressive deformation[J]. Macromolecules, 2018, 51(22): 9306-9316. doi: 10.1021/acs.macromol.8b01922
    [29] CHANTAWANSRI T L, SLIOZBERG Y R, ANDZELM J W, et al. Coarse-grained modeling of model poly (urethane urea) s: microstructure and interface aspects[J]. Polymer, 2012, 53(20): 4512-4524. doi: 10.1016/j.polymer.2012.07.056
    [30] GRUJICIC M, PANDURANGAN B, KING A E, et al. Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea[J]. Journal of Materials Science, 2011, 46(6): 1767-1779. doi: 10.1007/s10853-010-4998-y
    [31] FUJIMOTO K, TANG Z, SHINODA W, et al. All-atom molecular dynamics study of impact fracture of glassy polymers Ⅰ: molecular mechanism of brittleness of PMMA and ductility of PC[J]. Polymer, 2019, 178: 121570. doi: 10.1016/j.polymer.2019.121570
    [32] MAKKE A, PEREZ M, ROTTLER J, et al. Predictors of cavitation in glassy polymers under tensile strain: a coarse-grained molecular dynamics investigation[J]. Macromolecular Theory and Simulations, 2011, 20(9): 826-836. doi: 10.1002/mats.201100006
    [33] BALJON A R C, ROBBINS M O. Simulations of crazing in polymer glasses: effect of chain length and surface tension[J]. Macromolecules, 2001, 34(12): 4200-4209. doi: 10.1021/ma0012393
    [34] MAHAJAN D K, SINGH B, BASU S. Void nucleation and disentanglement in glassy amorphous polymers[J]. Physical Review E, 2010, 82: 011803.
    [35] BAI Y, LIU C, HUANG G, et al. A hyper-viscoelastic constitutive model for polyurea under uniaxial compressive loading[J]. Polymers, 2016, 8(4): 133. doi: 10.3390/polym8040133
    [36] CHEVELLARD G, RAVI-CHANDAR K, LIECHTI K M. Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach[J]. Mechanics of Time-Dependent Materials, 2012, 16(2): 181-203. doi: 10.1007/s11043-011-9146-9
    [37] GAMONPILAS C, MCCUISTON R. A non-linear viscoelastic material constitutive model for polyurea[J]. Polymer, 2012, 53(17): 3655-3658. doi: 10.1016/j.polymer.2012.06.030
    [38] SHIM J, MOHR D. Rate dependent finite strain constitutive model of polyurea[J]. International Journal of Plasticity, 2011, 27(6): 868-886. doi: 10.1016/j.ijplas.2010.10.001
    [39] GRUJICIC M, HE T, PANDURANGAN B, et al. Experimental characterization and material-model development for microphase-segregated polyurea: an overview[J]. Journal of Materials Engineering and Performance, 2012, 21(1): 2-16. doi: 10.1007/s11665-011-9875-6
    [40] LI C, LUA J. A hyper-viscoelastic constitutive model for polyurea[J]. Materials Letters, 2019, 63: 877-880.
    [41] FILONOVA V, LIU Y, FISH J. Singlescale and multiscale models of polyurea and high-density polyethylene (HDPE) subjected to high strain rates[M]//BARSOUM R G. Elastomeric Polymers With High Rate Sensitivity. Amsterdam: Elsevier, 2015: 233-256.
    [42] KEY C T, GORFAIN J E. A modified rate-dependent ballistic impact model for polyurea[M]//BARSOUM R G. Elastomeric Polymers With High Rate Sensitivity. Amsterdam: Elsevier, 2015: 304-318.
    [43] CLIFTON R J, WANG X, JIAO T. A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea[J]. Journal of the Mechanics and Physics of Solids, 2016, 93: 8-15. doi: 10.1016/j.jmps.2016.04.027
    [44] GURSON A L. Plastic Flow and fracture behavior of ductile materials incorporating void nucleaiion, growth and interaction[D]. Providence: Brown University, 1975.
    [45] TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1): 157-169. doi: 10.1016/0001-6160(84)90213-X
    [46] ZAÏRI F, NAÏT-ABDELAZIZ M, GLOAGUEN J M, et al. A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation[J]. International Journal of Plasticity, 2011, 27(1): 25-51. doi: 10.1016/j.ijplas.2010.03.007
    [47] CHALLIER M, BESSON J, LAIARINANDRASANA L, et al. Damage and fracture of polyvinylidene fluoride (PVDF) at 20℃: experiments and modelling[J]. Engineering Fracture Mechanics, 2006, 73(1): 79-90. doi: 10.1016/j.engfracmech.2005.06.007
    [48] GEARING B, ANAND L. On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing[J]. International Journal of Solids and Structures, 2004, 41(11/12): 3125-3150.
    [49] CHOWDHURY K A, BENZERGA A A, TALREJA R. An analysis of impact-induced deformation and fracture modes in amorphous glassy polymers[J]. Engineering Fracture Mechanics, 2008, 75(11): 3328-3342. doi: 10.1016/j.engfracmech.2007.08.007
    [50] MIEHE C, HOFACKER M, SCHÄNZEL L M, et al. Phase field modeling of fracture in multi-physics problems, part Ⅱ: Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 486-522. doi: 10.1016/j.cma.2014.11.017
    [51] NARAYAN S, ANAND L. Fracture of amorphous polymers: a gradient-damage theory[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104164. doi: 10.1016/j.jmps.2020.104164
    [52] FRANCIS D K, BOUVARD J L, HAMMI Y, et al. Formulation of a damage internal state variable model for amorphous glassy polymers[J]. International Journal of Solids and Structures, 2014, 51(15/16): 2765-2776.
    [53] ZHAO J, KNAUSS W G, RAVICHANDRAN G. Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea[J]. Mechanics of Time-Dependent Materials, 2007, 11(3): 289-308.
    [54] YAO K, LIU Z, LI T, et al. Mesoscale structure-based investigation of polyurea dynamic modulus and shock-wave dissipation[J]. Polymer, 2020, 202: 122741. doi: 10.1016/j.polymer.2020.122741
    [55] AGRAWAL V, HOLZWORTH K, NANTASETPHONG W, et al. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system[J]. Journal of Polymer Science (Part B): Polymer Physics, 2016, 54(8): 797-810. doi: 10.1002/polb.23976
    [56] GRUJICIC M, SNIPES J S, RAMASWAMI S, et al. Coarse-grained molecular-level analysis of polyurea properties and shock-mitigation potential[J]. Journal of Materials Engineering and Performance, 2013. 22(7): 1964-1981. doi: 10.1007/s11665-013-0485-3
    [57] KRÖGER M. Shortest multiple disconnected path for the analysis of entanglements in two-and three-dimensional polymeric systems[J]. Computer Physics Communications, 2005, 168(3): 209-232. doi: 10.1016/j.cpc.2005.01.020
    [58] LEE H S, YOO S R, SEO S W. Domain and segmental deformation behavior of thermoplastic elastomers using synchrotron SAXS and FTIR methods[J]. Journal of Polymer Science (Part B): Polymer Physics, 1999, 37(22): 3233-3245. doi: 10.1002/(SICI)1099-0488(19991115)37:22<3233::AID-POLB8>3.0.CO;2-J
    [59] YAO K, CHU D, LI T, et al. Atomic-scale simulation of hugoniot relations and energy dissipation of polyurea under high-speed shock[J]. Engineering Computations, 2021, 38(3): 1209-1225. doi: 10.1108/EC-10-2019-0482
    [60] YAO K, LIU Z, ZHUANG Z. Atomic insights into shock-induced spalling of polyurea by molecular dynamics simulation[J]. Extreme Mechanics Letters, 2022, 55: 101805. doi: 10.1016/j.eml.2022.101805
    [61] CHU D, LI Z, YAO K, et al. Studying the strengthening mechanism and thickness effect ofelastomer coating on the ballistic-resistance of the polyurea-coated steel plate[J]. International Journal of Impact Engineering, 2022, 163: 104181. doi: 10.1016/j.ijimpeng.2022.104181
    [62] CHU D, WANG Y, YANG S, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate[J]. Defence Technology, 2023, 19: 35-51. doi: 10.1016/j.dt.2021.11.010
    [63] PORTER D. Group Interaction Modelling of Polymer Properties[M]. New York: Marcel Dekker, 1995.
    [64] JIAO T, CLIFTON R, GRUNSCHEL S. Pressure-sensitivity and tensile strength of an elastomer at high strain rates[C]//AIP Conference Proceedings, 2007.
  • 加载中
图(26) / 表(3)
计量
  • 文章访问数:  50
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2025-07-25
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回