留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺栓连接加筋板的高效混合结构优化设计方法

夏甘霖 孟增 吴枝根

夏甘霖, 孟增, 吴枝根. 螺栓连接加筋板的高效混合结构优化设计方法[J]. 应用数学和力学, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185
引用本文: 夏甘霖, 孟增, 吴枝根. 螺栓连接加筋板的高效混合结构优化设计方法[J]. 应用数学和力学, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185
XIA Ganlin, MENG Zeng, WU Zhigen. An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185
Citation: XIA Ganlin, MENG Zeng, WU Zhigen. An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1108-1118. doi: 10.21656/1000-0887.450185

螺栓连接加筋板的高效混合结构优化设计方法

doi: 10.21656/1000-0887.450185
(我刊青年编委孟增来稿)
基金项目: 

国家自然科学基金(面上项目) 12372195

国家自然科学基金(面上项目) 11572108

详细信息
    作者简介:

    夏甘霖(2000—),男,硕士生(E-mail: 2022110536@mail.hfut.edu.cn)

    通讯作者:

    孟增(1987—),男,教授,博士,博士生导师(通讯作者. E-mail: mengz@hfut.edu.cn)

  • 中图分类号: O343.2

An Efficient Hybrid Structural Optimization Design Method for Bolt-Connected Stiffened Panels

(Contributed by MENG Zeng, M.AMM Youth Editorial Board)
  • 摘要:

    针对螺栓连接的加筋板屈曲性能优化建模复杂和计算量较大的问题,提出了一种基于Kriging代理模型和多点约束(multi-point constraint, MPC)近似模型的混合优化策略. 首先,运用MPC连接建立近似加筋板模型进行有限元屈曲分析,代替试验设计中大量的高精度加筋板模型分析. 然后,通过Kriging代理模型建立MPC参数的预测函数,并在优化迭代中更新代理模型样本点,保证近似模型的计算精度. 最后,基于建立的MPC近似模型,对螺栓连接加筋板进行了轻量化设计和性能最优化设计. 算例结果表明:该文提出的混合优化方法与传统优化方法相比,其计算效率提高了10倍左右. 在轻量化设计中,使加筋板结构在保证屈曲承载力不变的情况下减重了26.18%. 在性能最优化设计中,在质量无明显变化的情况下使极限屈曲承载力提高了23.67%.

    1)  (我刊青年编委孟增来稿)
  • 图  1  螺栓连接加筋板模型图

    Figure  1.  The model for the bolted stiffened panel

    图  2  混合优化方法流程图

    Figure  2.  The flowchart for the hybrid optimization method

    图  3  MPC连接加筋板模型图

    Figure  3.  The model for the MPC stiffened panel

    图  4  MSE迭代历史

    Figure  4.  The iteration history of MSE

    图  5  MPC模型和螺栓模型计算结果对比

    Figure  5.  Comparison of calculation results between the MPC model and the bolted model

    图  6  轻量化设计迭代历史

    Figure  6.  Iteration history of the lightweight design

    图  7  轻量化设计加筋板屈曲分析图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Buckling analysis of stiffened panels in the lightweight design

    图  8  屈曲性能最优化设计迭代历史

    Figure  8.  The iteration history of the maximum buckling performance design

    图  9  屈曲性能最优化设计加筋板屈曲分析图

    Figure  9.  Buckling analysis of stiffened panels in maximum buckling performance design

    表  1  设计变量上下边界

    Table  1.   Lower and upper bounds of design variables

    L/mm H/mm D/mm h/mm d1/mm d2/mm d3/mm
    initial value 600 10 200 10 20 40 20
    lower bound 200 0.5 100 0.5 10 10 10
    upper bound 1 500 20 500 20 50 50 50
    下载: 导出CSV

    表  2  轻量化设计优化结果

    Table  2.   The optimization results of the lightweight design

    initial design traditional method hybrid method
    L/mm 600 495.0 495.1
    H/mm 10 9.8 9.5
    D/mm 200 187.8 188.1
    h/mm 10 15.9 15.5
    d1/mm 20 22.6 22.7
    d2/mm 40 45.1 45.1
    d3/mm 20 10.4 10.8
    W/kg 4.67 3.45 3.45
    PMPC/MPa 155.41 - 153.64
    Pbolt/MPa 156.74 155.45 155.21
    δRE/% 0.85 - 1.02
    iterative step - 80 81
    CPU time/s - 64 980 8 676
    下载: 导出CSV

    表  3  屈曲性能最大化设计优化结果

    Table  3.   The optimization results of the maximum buckling performance design

    initial design traditional method hybrid method
    L/mm 600 580.4 585.1
    H/mm 10 11.5 11.1
    D/mm 200 181.5 185.5
    h/mm 10 13.2 14.8
    d1/mm 20 22.1 23.7
    d2/mm 40 12.5 13.8
    d3/mm 20 25.1 25.1
    W/kg 4.67 4.71 4.70
    PMPC/MPa 155.41 - 193.85
    Pbolt/MPa 156.74 194.17 195.82
    δRE/% 0.85 - 1.01
    iterative step - 46 46
    CPU time/s - 37 310 4 909
    下载: 导出CSV
  • [1] 飞机设计手册总编委会. 载荷、强度和刚度[M]. 飞机设计手册, 9册. 北京: 航空工业出版社, 2005.

    General Editorial Committee of the Aircraft Design Handbook. Load, Strength and Stiffness[M]. Aircraft Design Handbook, Vol 9. Beijing: Aviation Industry Press, 2005. (in Chinese)
    [2] 白瑞祥, 陈浩然. 含分层损伤复合材料加筋层合板的分层扩展研究[J]. 应用数学和力学, 2004, 25(4): 368-378. http://www.applmathmech.cn/article/id/54

    BAI Ruixiang, CHEN Haoran. Numerical analysis of delamination growth for stiffened composite laminated plates[J]. Applied Mathematics and Mechanics, 2004, 25(4): 368-378. (in Chinese) http://www.applmathmech.cn/article/id/54
    [3] VENKATARAMAN S, HAFTKA R T. Optimization of composite panels: a review[C]//American Society for Composites, 1999: 479-488.
    [4] LANZI L, GIAVOTTO V. Post-buckling optimization of composite stiffened panels: computations and experiments[J]. Composite Structures, 2006, 73(2): 208-220.
    [5] 张涛, 刘土光, 熊有伦, 等. 流固冲击下加筋板的非线性动态屈曲[J]. 应用数学和力学, 2004, 25(7): 755-762. http://www.applmathmech.cn/article/id/369

    ZHANG Tao, LIU Tuguang, XIONG Youlun, et al. Dynamic buckling of stiffened plates under fluid-solid impact load[J]. Applied Mathematics and Mechanics, 2004, 25(7): 755-762. (in Chinese) http://www.applmathmech.cn/article/id/369
    [6] NI X Y, PRUSTY B G, HELLIER A K. Buckling and post-buckling of isotropic and composite stiffened panels: a review on optimisation (2000-2015)[J]. International Journal of Maritime Engineering, 2016, 158(A3): A251-A267.
    [7] KIM D K, LIM H L, YU S Y. A technical review on ultimate strength prediction of stiffened panels in axial compression[J]. Ocean Engineering, 2018, 170: 392-406.
    [8] 王博, 郝鹏, 田阔. 加筋薄壳结构分析与优化设计研究进展[J]. 计算力学学报, 2019, 36(1): 1-12.

    WANG Bo, HAO Peng, TIAN Kuo. Recent advances in structural analysis and optimization of stiffened shells[J]. Chinese Journal of Computational Mechanics, 2019, 36(1): 1-12. (in Chinese)
    [9] 刘宸宇, 骆烜赫, 刘康翔, 等. 基于平铺刚度法的弧形加筋板的轻量化设计[J]. 应用数学和力学, 2023, 44(8): 953-964. doi: 10.21656/1000-0887.430342

    LIU Chenyu, LUO Xuanhe, LIU Kangxiang, et al. Lightweight design of arc rib stiffened plates based on the smeared stiffener method[J]. Applied Mathematics and Mechanics, 2023, 44(8): 953-964. (in Chinese) doi: 10.21656/1000-0887.430342
    [10] HAO P, LIU D, LIU H, et al. Intelligent optimum design of large-scale gradual-stiffness stiffened panelsvia multi-level dimension reduction[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116759.
    [11] 施利娟, 杨平. 高速船铝合金带筋板的力学性能优化设计[J]. 船海工程, 2011, 40(2): 36-39.

    SHI Lijuan, YANG Ping. Optimum design of mechanical properties of aluminum sheets-with-ribs of high speed ships[J]. Ship & Ocean Engineering, 2011, 40(2): 36-39. (in Chinese)
    [12] 郝鹏, 王博, 李刚, 等. 基于代理模型和等效刚度模型的加筋柱壳混合优化设计[J]. 计算力学学报, 2012, 29(4): 481-486.

    HAO Peng, WANG Bo, LI Gang, et al. Hybrid optimization of grid-stiffened cylinder based on surrogate model and smeared stiffener model[J]. Chinese Journal of Computational Mechanics, 2012, 29(4): 481-486. (in Chinese)
    [13] 张柱国, 姚卫星, 刘克龙. 基于进化Kriging模型的金属加筋板结构布局优化方法[J]. 南京航空航天大学学报, 2008, 40(4): 497-500.

    ZHANG Zhuguo, YAO Weixing, LIU Kelong. Configuration optimization method for metallic stiffened panel structure based on updated Kriging model[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4): 497-500. (in Chinese)
    [14] 时光辉, 贾宜播, 郝文宇, 等. 基于数据驱动的舵面结构优化设计[J]. 力学学报, 2023, 55(11): 2577-2587.

    SHI Guanghui, JIA Yibo, HAO Wenyu, WU Wenhua, LI Qiang, LIN Ye, DU Zongliang. Optimal design of rudder structures based on data-driven method[J]. Chinese Journal of Mechanical Mechanics, 2023, 55(11): 2577-2587. (in Chinese)
    [15] KAPANIA R, MULANI S, TAMIJANI A Y, et al. EBF3PanelOpt: a computational design environment for panels fabricated by additive manufacturing[C]// 51 st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Texas, 2013: AIAA2013-212.
    [16] 赵振, 刘才山, 陈滨, 等. 薄壁加筋肋圆柱壳稳定性分析的参数化研究[J]. 力学与实践, 2004, 26(2): 17-21.

    ZHAO Zhen, LIU Caishan, CHEN Bin, et al. Parameterization study of orthogrid stiffened cylinder shells[J]. Mechanics and Engineering, 2004, 26(2): 17-21. (in Chinese)
    [17] TIAN K, WANG B, ZHANG K, et al. Tailoring the optimal load-carrying efficiency of hierarchical stiffened shells by competitive sampling[J]. Thin-Walled Structures, 2018, 133: 216-225.
    [18] 中国航空研究院. 复合材料连接手册[M]. 北京: 航空工业出版社, 1994.

    Chinese Aeronautical Establishment. Handbook of Joint for Composite Materials[M]. Beijing: Aviation Industry Press, 1994. (in Chinese)
    [19] MOU H, XIE J, FENG Z. Research status and future development of crashworthiness of civil aircraft fuselage structures: an overview[J]. Progress in Aerospace Sciences, 2020, 119: 100644.
    [20] MCCARTHY M A, MCCARTHY C T, LAWLOR V P, et al. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints, part Ⅰ: model development and validation[J]. Composite Structures, 2005, 71(2): 140-158.
    [21] GRAY P J, MCCARTHY C T. A global bolted joint model for finite element analysis of load distributions in multi-bolt composite joints[J]. Composites (Part B): Engineering, 2010, 41(4): 317-325.
    [22] 刘建华. 轴向激励下螺栓连接结构的松动机理研究[D]. 成都: 西南交通大学, 2016.

    LIU Jianhua. Research on the self-loosening mechanism of bolted joints under axial excitation[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
    [23] MATHAN G, PRASAD N S. Study of dynamic response of piping system with gasketed flanged joints using finite element analysis[J]. International Journal of Pressure Vessels and Piping, 2012, 89: 28-32.
    [24] AHMADIAN H, NOURMOHAMMADI M. Tool point dynamics prediction by a three-component model utilizing distributed joint interfaces[J]. International Journal of Machine Tools and Manufacture, 2010, 50(11): 998-1005.
    [25] 万春华, 段世慧, 吴存利. 加筋结构后屈曲有限元建模方法研究[J]. 机械科学与技术, 2015, 34(5): 795-798.

    WAN Chunhua, DUAN Shihui, WU Cunli. Study on the finite element modeling for post-buckling analysis of the stiffened structure[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(5): 795-798. (in Chinese)
    [26] 韩旭, 雷磊, 袁伟, 等. 基于等效模型的帽型复合材料加筋壁板优化设计[J]. 材料工程, 2009, 37(S2): 173-178.

    HAN Xu, LEI Lei, YUAN Wei, et al. Optimization of the composite hat-stiffened panel based on equivalent model[J]. Journal of Materials Engineering, 2009, 37(S2): 173-178. (in Chinese)
    [27] LV Z Y, LU Z Z, WANG P. A new learning function for Kriging and its applications to solve reliability problems in engineering[J]. Computers & Mathematics With Applications, 2015, 70(5): 1182-1197.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  15
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-24
  • 修回日期:  2024-09-26
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回