留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T-S模糊控制下的多层网络有限时间同步及能耗估计

朱国良 陈巧玉 童东兵 毛琦

朱国良, 陈巧玉, 童东兵, 毛琦. T-S模糊控制下的多层网络有限时间同步及能耗估计[J]. 应用数学和力学, 2025, 46(7): 939-946. doi: 10.21656/1000-0887.450191
引用本文: 朱国良, 陈巧玉, 童东兵, 毛琦. T-S模糊控制下的多层网络有限时间同步及能耗估计[J]. 应用数学和力学, 2025, 46(7): 939-946. doi: 10.21656/1000-0887.450191
ZHU Guoliang, CHEN Qiaoyu, TONG Dongbing, MAO Qi. Synchronization and Energy Consumption Estimation of T-S Fuzzy Multi-Layer Networks Within Finite Time[J]. Applied Mathematics and Mechanics, 2025, 46(7): 939-946. doi: 10.21656/1000-0887.450191
Citation: ZHU Guoliang, CHEN Qiaoyu, TONG Dongbing, MAO Qi. Synchronization and Energy Consumption Estimation of T-S Fuzzy Multi-Layer Networks Within Finite Time[J]. Applied Mathematics and Mechanics, 2025, 46(7): 939-946. doi: 10.21656/1000-0887.450191

T-S模糊控制下的多层网络有限时间同步及能耗估计

doi: 10.21656/1000-0887.450191
基金项目: 

国家自然科学基金 61673257

详细信息
    作者简介:

    朱国良(2000—), 男, 硕士生(E-mail: zhuguoliang1001@163.com)

    通讯作者:

    陈巧玉(1984—), 女, 副教授, 博士(通讯作者. E-mail: goodluckqiaoyu@126.com)

  • 中图分类号: O357.41

Synchronization and Energy Consumption Estimation of T-S Fuzzy Multi-Layer Networks Within Finite Time

  • 摘要: 该文讨论了一类T-S模糊多层网络的有限时间同步和能耗估计问题. 首先, 针对多层网络, 给出了T-S模糊控制策略, 以处理多层网络之间的灵活关系. 其次, 基于模糊理论, 设计了有限时间控制器, 并提出了实现驱动-响应系统间有限时间同步的准则. 此外, 根据能耗理论, 估算出T-S模糊多层网络的能耗和同步时间的上限, 从而估计了控制器的工作时间. 最后, 通过一个数值实例验证了所获结果的正确性.
  • 图  1  驱动系统与响应系统间结构图

    Figure  1.  The structure graph of the drive system and the response system

    图  2  隶属度函数

    Figure  2.  Membership functions

    图  3  在没有控制器作用下的误差曲线

    Figure  3.  The error curves without controllers

    图  4  误差曲线e1i

    Figure  4.  The error curves of e1i

    图  5  误差曲线e2i

    Figure  5.  The error curves of e2i

    图  6  误差曲线e3i

    Figure  6.  The error curves of e3i

    图  7  系统(6)在控制过程中所消耗的能量曲线

    Figure  7.  The energy consumption curve of system (6)

  • [1] RIBAS L C, BRUNO O M. Learning a complex network representation for shape classification[J]. Pattern Recognition, 2024, 154 : 110566.
    [2] LI S, ZHAO J, DING X. Stability of stochastic delayed multi-links complex network with semi-Markov switched topology: a time-varying hybrid aperiodically intermittent control strategy[J]. Information Sciences, 2023, 630 : 623-646.
    [3] XING M, LU J, QIU J, et al. Synchronization of complex dynamical networks subject to DoS attacks: an improved coding-decoding protocol[J]. IEEE Transactions on Cybernetics, 2023, 53 (1): 102-113.
    [4] 张檬, 韩敏. 基于单向耦合法的不确定复杂网络间有限时间同步[J]. 自动化学报, 2021, 47 (7): 1624-1632.

    ZHANG Meng, HAN Min. Finite-time synchronization between uncertain complex networks based on unidirectional coupling method[J]. Acta Automatica Sinica, 2021, 47 (7): 1624-1632. (in Chinese)
    [5] GULARTE K H M, GÓMEZ J C G, DOS SANTOS RABELO H, et al. Minimal underactuated synchronization with applications to secure communication[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 125 : 107376.
    [6] XU Y, WU Z G. Distributed adaptive event-triggered fault-tolerant synchronization formultiagent systems[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (2): 1537-1547.
    [7] WANG Y, LI H, GUAN Y, et al. Predefined-time chaos synchronization of memristor chaotic systems by using simplified control inputs[J]. Chaos, Solitons & Fractals, 2022, 161 : 112282.
    [8] 王柯杰, 陈巧玉, 童东兵, 等. 具有随机扰动和不确定性的中立型耦合神经网络有限时间同步[J]. 应用数学和力学, 2023, 44 (4): 480-488. doi: 10.21656/1000-0887.420411

    WANG Kejie, CHEN Qiaoyu, TONG Dongbing, et al. Finite-time synchronization for coupled neutral-type neural networks with stochastic disturbances and uncertainties[J]. Applied Mathematics and Mechanics, 2023, 44 (4): 480-488. (in Chinese) doi: 10.21656/1000-0887.420411
    [9] PEETERS W. Fuzzy Control: Theory and Practice[M]. Springer Science & Business Media, 2013.
    [10] SANG H, WANG P, ZHAO Y, et al. Input-output finite-time stability for switched T-S fuzzy delayed systems with a time-dependent Lyapunov-Krasovskii functional approach[J]. IEEE Transactions on Fuzzy Systems, 2023, 31 (11): 3823-3837.
    [11] CHEN Z, ZHANG B, STOJANOVIC V, et al. Event-based fuzzy control for T-S fuzzy networked systems with various data missing[J]. Neurocomputing, 2020, 417 : 322-332.
    [12] SHANG Y, GAO L, ZOU Q, et al. Prediction of drug-target interactions based on multi-layer network representation learning[J]. Neurocomputing, 2021, 434 : 80-89.
    [13] LIU Q, YAN H, ZHANG H, et al. Exponential synchronization of second-order fuzzy memristor-based neural networks with mixed time delays via fuzzy adaptive control[J]. IEEE Transactions on Fuzzy Systems, 2023, 31 (6): 1953-1965.
    [14] CHEN W, YU Y, HAI X, et al. Adaptive quasi-synchronization control of heterogeneous fractional-order coupled neural networks with reaction-diffusion[J]. Applied Mathematics and Computation, 2022, 427 : 127145.
    [15] XU Y, WU X, WAN X, et al. Finite/fixed-time synchronization of multi-layer networks based on energy consumption estimation[J]. IEEE Transactions on Circuits and Systems : Regular Papers, 2021, 68 (10): 4278-4286.
    [16] LI Y, KAO Y, WANG C, et al. Finite-time synchronization of delayed fractional-order heterogeneous complex networks[J]. Neurocomputing, 2020, 384 : 368-375.
    [17] 翟国庆, 陈巧玉, 童东兵, 等. 非线性系统的固定时间渐近稳定性及能量消耗估计[J]. 应用数学和力学, 2023, 44 (10): 1180-1186. doi: 10.21656/1000-0887.440041

    ZHAI Guoqing, CHEN Qiaoyu, TONG Dongbing, et al. Fixed-time asymptotic stability and energy consumption estimation of nonlinear systems[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1180-1186. (in Chinese) doi: 10.21656/1000-0887.440041
    [18] WANG X, PARK J H, YANG H, et al. Delay-dependent fuzzy sampled-data synchronization of T-S fuzzy complex networks with multiple couplings[J]. IEEE Transactions on Fuzzy Systems, 2020, 28 (1): 178-189.
  • 加载中
图(7)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 修回日期:  2024-10-03
  • 网络出版日期:  2025-07-30
  • 刊出日期:  2025-07-01

目录

    /

    返回文章
    返回