留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维准晶平面问题中的Hamilton体系求解方法

李彤 屈建龙 王炜 王晨龙 徐新生

李彤, 屈建龙, 王炜, 王晨龙, 徐新生. 二维准晶平面问题中的Hamilton体系求解方法[J]. 应用数学和力学, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
引用本文: 李彤, 屈建龙, 王炜, 王晨龙, 徐新生. 二维准晶平面问题中的Hamilton体系求解方法[J]. 应用数学和力学, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
LI Tong, QU Jianlong, WANG Wei, WANG Chenlong, XU Xinsheng. A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204
Citation: LI Tong, QU Jianlong, WANG Wei, WANG Chenlong, XU Xinsheng. A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1359-1371. doi: 10.21656/1000-0887.450204

二维准晶平面问题中的Hamilton体系求解方法

doi: 10.21656/1000-0887.450204
详细信息
    作者简介:

    李彤(1998—),女,博士(E-mail: litong1998@mail.dlut.edu.cn);徐新生(1957—),男,教授,博士,博士生导师(通讯作者. E-mail: xsxu@dlut.edu.cn).

    通讯作者:

    徐新生(1957—),男,教授,博士,博士生导师(通讯作者. E-mail: xsxu@dlut.edu.cn).

  • 中图分类号: O343.1

A Hamiltonian System Solution Method for Planar Problems of 2D Quasicrystals

  • 摘要: 针对二维准晶平面问题,该文通过导入Hamilton体系,将问题转化为Hamilton体系下的辛本征值和辛本征解问题,即问题的解可由辛本征解组成的级数表示.利用辛本征解之间的辛共轭正交关系,可将满足边界条件的解问题归结为代数方程组的求解问题,从而形成一种解析求解方法.这种方法可直接推广到求解混合边界条件及分段边界条件问题中.
  • [2]范天佑. 准晶数学弹性理论和某些有关研究的进展(下)[J]. 力学进展, 2012,42(6): 675-691.(FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics[J].Advances in Mechanics,2012,42(6): 675-691.(in Chinese))
    范天佑. 准晶数学弹性理论和某些有关研究的进展(上)[J]. 力学进展, 2012,42(5): 501-521.

    (FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics [J].Advances in Mechanics,2012,42(5): 501-521.(in Chinese))
    [3]DUBOIS J M. New prospects from potential applications of quasicrystalline materials[J].Materials Science and Engineering: A,2000,294/296: 4-9.
    [4]AMINI M, RAHIMIPOUR M R, TAYEBIFARD S A, et al. Towards physical and mechanical properties of the novel Al-Cr-Ni-Fe decagonal quasicrystal and crystalline approximants[J].Advanced Powder Technology,2022,33(2): 103383.
    [5]TAKAGIWA Y, MAEDA R, OHHASHI S, et al. Reduction of thermal conductivity for icosahedral Al-Cu-Fe quasicrystal through heavy element substitution[J].Materials,2021,14(18): 5238.
    [6]STROUD R M, VIANO A M, GIBBONS P C, et al. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage[J].Applied Physics Letters,1996,69(20): 2998-3000.
    [7]康国政, 陈义甫, 黄伟洋. 介电高弹体的力-电耦合循环变形和疲劳失效行为研究[J]. 力学进展, 2023,53(3): 592-625.(KANG Guozheng, CHEN Yifu, HUANG Weiyang. Review on electro-mechanically coupled cyclic deformation and fatigue failure behavior of dielectric elastomers[J].Advances in Mechanics,2023,53(3): 592-625.(in Chinese))
    [8]JARIC M V, NELSON D R. Diffuse scattering from quasicrystals[J].Physical Review B,1988. DOI: 10.1103/PhysRevB.37.4458.
    [9]FAN Tianyou.Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
    [10]DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J].Physical Review B: Covering Condensed Matter and Materials Physics,1993,48(10): 7003-7010.
    [11]FAN T Y, GUO L H. The final governing equation and fundamental solution of plane elasticity of icosahedral quasicrystals[J].Physics Letters A,2005,341(1/4): 235-239.
    [12]GAO Y, SHANG L G. Governing equations and general solutions of plane elasticity of two-dimensional decagonal quasicrystals[J].International Journal of Modern Physics B,2011,25(20): 2769-2778.
    [13]ZHANG Liangliang, YANG Lianzhi, YU Lianying, et al. General solutions of thermoelastic plane problems of two-dimensional quasicrystals[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(2): 142-146.
    [14]ZHAO X F, LI X, DING S H. Two kinds of contact problems in three-dimensional icosahedral quasicrystals[J].Applied Mathematics and Mechanics (English Edition),2015,36(12): 1569-1580.
    [15]李光芳, 刘昉昉, 于静, 等. 立方准晶压电材料的半空间问题[J]. 应用数学和力学, 2023,44(7): 825-833.(LI Guangfang, LIU Fangfang, YU Jing, et al. The half space problem of cubic quasicrystal piezoelectric materials[J].Applied Mathematics and Mechanics,2023,44(7): 825-833.(in Chinese))
    [16]杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024,45(2): 144-154.(YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J].Applied Mathematics and Mechanics,2024,45(2): 144-154.(in Chinese))
    [17]FENG X, ZHANG L L, LI Y, et al. On the propagation of plane waves in cubic quasicrystal plates with surface effects[J].Physics Letters A,2023,473: 128807.
    [18]原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024,45(2): 208-219.(YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J].Applied Mathematics and Mechanics,2024,45(2): 208-219.(in Chinese))
    [19]范俊杰, 李联和, 阿拉坦仓. 对边简支十次对称二维准晶板弯曲问题的辛分析[J]. 应用数学和力学, 2023,44(7): 834-846.(FAN Junjie, LI Lianhe, ALATANCANG. Symplectic analysis on the bending problem of decagonal symmetric 2D quasicrystal plates with 2 opposite edges simply supported[J].Applied Mathematics and Mechanics,2023,44(7): 834-846.(in Chinese))
    [20]王会苹, 王桂霞, 陈德财. 含椭圆孔有限大二十面体准晶板平面弹性问题的边界元分析[J]. 应用数学和力学, 2024,45(4): 400-415.(WANG Huiping, WANG Guixia, CHEN Decai. Boundary element analysis for the plane elasticity problems of finite icosahedral quasicrystal plates containing elliptical holes[J].Applied Mathematics and Mechanics,2024,45(4): 400-415.(in Chinese))
    [21]ZHU S B, TONG Z Z, LI Y Q, et al. Post-buckling of two-dimensional decagonal piezoelectric quasicrystal cylindrical shells under compression[J].International Journal of Mechanical Sciences,2022,235: 107720.
    [22]ZHONG W X.Duality System in Applied Mechanics and Optimal Control[M]. Boston: Kluwer Academic Publishers, 2004.
    [23]WANG H, LI L H, HUANG J J, et al. Symplectic approach for the plane elasticity problem of quasicrystals with point group 10 mm[J].Applied Mathematical Modelling,2015,39(12): 3306-3316.
    [24]QIAO Y F, HOU G L, CHEN A. Symplectic approach for plane elasticity problems of two-dimensional octagonal quasicrystals[J].Applied Mathematics and Computation,2021,400: 126043.
    [25]SUN Z Q, HOU G L, QIAO Y F, et al. Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions[J].Chinese Physics B,2024,33(1): 016107.
    [26]LI G F, LI L H. An analysis method of symplectic dual system for decagonal quasicrystal plane elasticity and application[J].Crystals,2022,12(5): 636.
    [27]郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007,28(8): 949-957.(GUO Lihui, FAN Tianyou. Solvability on boundary-value problems of elasyicity of three-dimensional quasicrystals[J].Applied Mathematics and Mechanics,2007,28(8): 949-957.(in Chinese))
    [28]CAO H B, SHI Y Q, LI W. Analytic solutions to two-dimensional decagonal quasicrystals with defects using complex potential theory[J].Crystals,2019,9(4): 209.
    [29]LI W, FAN T Y. Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group[J].Chinese Physics B,2011,20(3): 036101.
    [30]LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J].Materials,2023,16(10): 3628.
  • 加载中
计量
  • 文章访问数:  29
  • HTML全文浏览量:  5
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-10
  • 修回日期:  2024-08-16
  • 网络出版日期:  2024-12-02

目录

    /

    返回文章
    返回