[1] |
范天佑. 准晶数学弹性理论和某些有关研究的进展(上)[J]. 力学进展, 2012, 42 (5): 501-521.FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics (Ⅰ)[J]. Advances in Mechanics, 2012, 42 (5): 501-521. (in Chinese)
|
[2] |
范天佑. 准晶数学弹性理论和某些有关研究的进展(下)[J]. 力学进展, 2012, 42 (6): 675-691.FAN Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics (Ⅱ)[J]. Advances in Mechanics, 2012, 42 (6): 675-691. (in Chinese)
|
[3] |
DUBOIS J M. New prospects from potential applications of quasicrystalline materials[J]. Materials Science and Engineering: A, 2000, 294/296 : 4-9. doi: 10.1016/S0921-5093(00)01305-8
|
[4] |
AMINI M, RAHIMIPOUR M R, TAYEBIFARD S A, et al. Towards physical and mechanical properties of the novel Al-Cr-Ni-Fe decagonal quasicrystal and crystalline approximants[J]. Advanced Powder Technology, 2022, 33 (2): 103383. doi: 10.1016/j.apt.2021.12.002
|
[5] |
TAKAGIWA Y, MAEDA R, OHHASHI S, et al. Reduction of thermal conductivity for icosahedral Al-Cu-Fe quasicrystal through heavy element substitution[J]. Materials, 2021, 14 (18): 5238. doi: 10.3390/ma14185238
|
[6] |
STROUD R M, VIANO A M, GIBBONS P C, et al. Stable Ti-based quasicrystal offers prospect for improved hydrogen storage[J]. Applied Physics Letters, 1996, 69 (20): 2998-3000. doi: 10.1063/1.117756
|
[7] |
康国政, 陈义甫, 黄伟洋. 介电高弹体的力-电耦合循环变形和疲劳失效行为研究[J]. 力学进展, 2023, 53 (3): 592-625.KANG Guozheng, CHEN Yifu, HUANG Weiyang. Review on electro-mechanically coupled cyclic deformation and fatigue failure behavior of dielectric elastomers[J]. Advances in Mechanics, 2023, 53 (3): 592-625. (in Chinese)
|
[8] |
JARIĆ M V, NELSON D R. Diffuse scattering from quasicrystals[J]. Physical Review B, 1988. DOI: 10.1103/PhysRevB.37.4458.
|
[9] |
FAN Tianyou. Mathematical Theory of Elasticity of Quasicrystals and Its Applications[M]. Berlin: Springer, 2011.
|
[10] |
DING D H, YANG W G, HU C Z, et al. Generalized elasticity theory of quasicrystals[J]. Physical Review B: Covering Condensed Matter and Materials Physics, 1993, 48 (10): 7003-7010. doi: 10.1103/PhysRevB.48.7003
|
[11] |
FAN T Y, GUO L H. The final governing equation and fundamental solution of plane elasticity of icosahedral quasicrystals[J]. Physics Letters A, 2005, 341 (1/4): 235-239.
|
[12] |
GAO Y, SHANG L G. Governing equations and general solutions of plane elasticity of two-dimensional decagonal quasicrystals[J]. International Journal of Modern Physics B, 2011, 25 (20): 2769-2778. doi: 10.1142/S0217979211101065
|
[13] |
ZHANG Liangliang, YANG Lianzhi, YU Lianying, et al. General solutions of thermoelastic plane problems of two-dimensional quasicrystals[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2014, 31 (2): 142-146.
|
[14] |
ZHAO X F, LI X, DING S H. Two kinds of contact problems in three-dimensional icosahedral quasicrystals[J]. Applied Mathematics and Mechanics (English Edition), 2015, 36 (12): 1569-1580. doi: 10.1007/s10483-015-2006-6
|
[15] |
李光芳, 刘昉昉, 于静, 等. 立方准晶压电材料的半空间问题[J]. 应用数学和力学, 2023, 44 (7): 825-833. doi: 10.21656/1000-0887.430221LI Guangfang, LIU Fangfang, YU Jing, et al. The half space problem of cubic quasicrystal piezoelectric materials[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 825-833. (in Chinese) doi: 10.21656/1000-0887.430221
|
[16] |
杨震霆, 王雅静, 聂雪阳, 等. 含切口的压电准晶组合结构界面断裂分析的辛-等几何耦合方法[J]. 应用数学和力学, 2024, 45 (2): 144-154. doi: 10.21656/1000-0887.440247YANG Zhenting, WANG Yajing, NIE Xueyang, et al. Symplectic isogeometric analysis coupling method for interfacial fracture of piezoelectric quasicrystal composites with notches[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 144-154. (in Chinese) doi: 10.21656/1000-0887.440247
|
[17] |
FENG X, ZHANG L L, LI Y, et al. On the propagation of plane waves in cubic quasicrystal plates with surface effects[J]. Physics Letters A, 2023, 473 : 128807. doi: 10.1016/j.physleta.2023.128807
|
[18] |
原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45 (2): 208-219. doi: 10.21656/1000-0887.440260YUAN Qingdan, GUO Junhong. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45 (2): 208-219. (in Chinese) doi: 10.21656/1000-0887.440260
|
[19] |
范俊杰, 李联和, 阿拉坦仓. 对边简支十次对称二维准晶板弯曲问题的辛分析[J]. 应用数学和力学, 2023, 44 (7): 834-846. doi: 10.21656/1000-0887.430267FAN Junjie, LI Lianhe, ALATANCANG. Symplectic analysis on the bending problem of decagonal symmetric 2D quasicrystal plates with 2 opposite edges simply supported[J]. Applied Mathematics and Mechanics, 2023, 44 (7): 834-846. (in Chinese) doi: 10.21656/1000-0887.430267
|
[20] |
王会苹, 王桂霞, 陈德财. 含椭圆孔有限大二十面体准晶板平面弹性问题的边界元分析[J]. 应用数学和力学, 2024, 45 (4): 400-415. doi: 10.21656/1000-0887.440241WANG Huiping, WANG Guixia, CHEN Decai. Boundary element analysis for the plane elasticity problems of finite icosahedral quasicrystal plates containing elliptical holes[J]. Applied Mathematics and Mechanics, 2024, 45 (4): 400-415. (in Chinese) doi: 10.21656/1000-0887.440241
|
[21] |
ZHU S B, TONG Z Z, LI Y Q, et al. Post-buckling of two-dimensional decagonal piezoelectric quasicrystal cylindrical shells under compression[J]. International Journal of Mechanical Sciences, 2022, 235 : 107720. doi: 10.1016/j.ijmecsci.2022.107720
|
[22] |
ZHONG W X. Duality System in Applied Mechanics and Optimal Control[M]. Boston: Kluwer Academic Publishers, 2004.
|
[23] |
WANG H, LI L H, HUANG J J, et al. Symplectic approach for the plane elasticity problem of quasicrystals with point group 10 mm[J]. Applied Mathematical Modelling, 2015, 39 (12): 3306-3316. doi: 10.1016/j.apm.2014.10.060
|
[24] |
QIAO Y F, HOU G L, CHEN A. Symplectic approach for plane elasticity problems of two-dimensional octagonal quasicrystals[J]. Applied Mathematics and Computation, 2021, 400 : 126043. doi: 10.1016/j.amc.2021.126043
|
[25] |
SUN Z Q, HOU G L, QIAO Y F, et al. Hamiltonian system for the inhomogeneous plane elasticity of dodecagonal quasicrystal plates and its analytical solutions[J]. Chinese Physics B, 2024, 33 (1): 016107. doi: 10.1088/1674-1056/acfaf3
|
[26] |
LI G F, LI L H. An analysis method of symplectic dual system for decagonal quasicrystal plane elasticity and application[J]. Crystals, 2022, 12 (5): 636. doi: 10.3390/cryst12050636
|
[27] |
郭丽辉, 范天佑. 准晶弹性理论边值问题的可解性[J]. 应用数学和力学, 2007, 28 (8): 949-957. http://www.applmathmech.cn/article/id/952GUO Lihui, FAN Tianyou. Solvability on boundary-value problems of elasyicity of three-dimensional quasicrystals[J]. Applied Mathematics and Mechanics, 2007, 28 (8): 949-957. (in Chinese) http://www.applmathmech.cn/article/id/952
|
[28] |
CAO H B, SHI Y Q, LI W. Analytic solutions to two-dimensional decagonal quasicrystals with defects using complex potential theory[J]. Crystals, 2019, 9 (4): 209. doi: 10.3390/cryst9040209
|
[29] |
LI W, FAN T Y. Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group[J]. Chinese Physics B, 2011, 20 (3): 036101. doi: 10.1088/1674-1056/20/3/036101
|
[30] |
LI T, YANG Z T, XU C H, et al. A phase field approach to two-dimensional quasicrystals with mixed mode cracks[J]. Materials, 2023, 16 (10): 3628. doi: 10.3390/ma16103628
|