|
[2]LI L, LIU J G, WANG L Z. Cauchy problems for Keller-Segel type time-space fractional diffusion equation[J].Journal of Differential Equations,2018,265(3): 1044-1096.
|
|
DE ANDRADE B, VIANA A. Abstract Volterra integrodifferential equations with applications to parabolic models with memory[J].Mathematische Annalen,2017,369: 1131-1175.
|
|
[3]SUN Y F, ZENG Z, SONG J. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation[J].Numerical Algebra,Control and Optimization,2020,10(2): 157-164.
|
|
[4]METZLER R, KLAFTER J. The random walk’s guide to anomalous diffusion: a fractional dynamics approach[J].Physics Reports,2000,339(1): 1-77.
|
|
[5]崔建譞, 石成鑫, 柳冕, 等. 具有Robin边界条件的时间分数阶扩散方程的源项辨识问题研究[J]. 应用数学和力学, 2022,43(11): 1303-1312.(CUI Jianxuan, SHI Chengxin, LIU Mian, et al. Source identification for the time-fractional diffusion equation with robin boundary conditions[J].Applied Mathematics and Mechanics,2022,43(11): 1303-1312. (in Chinese))
|
|
[6]吴迪, 李小林. 时间分数阶扩散波方程的无单元Galerkin法分析[J]. 应用数学和力学, 2022,43(2): 215-223.(WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J].Applied Mathematics and Mechanics,2022,43(2): 215-223. (in Chinese))
|
|
[7]袁小雨, 冯晓莉, 张云. 一种迭代正则化方法求解一类同时带有两个扰动数据的反向问题[J]. 应用数学和力学, 2023,44(10): 1260-1271.(YUAN Xiaoyu, FENG Xiaoli, ZHANG Yun. An iterative regularization method for solving backward problems with 2 perturbation data[J].Applied Mathematics and Mechanics,2023,44(10): 1260-1271. (in Chinese))
|
|
[8]ZENNIR K, MIYASITA T. Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory[J].Alexandria Engineering Journal,2020,59(2): 957-964.
|
|
[9]CAO Y, YIN J X, WANG C P. Cauchy problems of semilinear pseudo-parabolic equations[J].Journal of Differential Equations,2009,246(12): 4568-4590.
|
|
[10]ZHOU J. Fujita exponent for an inhomogeneous pseudoparabolic equation[J].Rocky Mountain Journal of Mathematics,2020,50(3):1125-1137.
|
|
[11]BORIKHANOV M B, TOREBEK B T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation[J].Applied Mathematics Letters,2022,134: 108366.
|
|
[12]JIN L Y, LI L, FANG S M. The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation[J].Computers & Mathematics With Applications,2017,73(10): 2221-2232.
|
|
[13]ZHANG Q G, SUN H R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation[J].Topological Methods in Nonlinear Analysis,2015,46: 69-92.
|
|
[14]TUAN N H, AU V V, XU R Z. Semilinear Caputo time-fractional pseudo-parabolic equations[J].Communications on Pure and Applied Analysis,2021,20 (2): 583-621.
|
|
[15]LI Y N, YANG Y T. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation[J].AIMS Mathematics,2023,8(8): 17827-17859.
|
|
[16]SAMKO S G, KILBAS A A, MARICHEY O I.Fractional Integrals and Derivatives:Theory and Applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
|
|
[17]SERRIN J, ZOU H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[J].Acta Mathematica,2002,189: 79-142.
|