• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤水流中溶质输运的CN有限元解系数向量的降维方法

侯晓丽 罗振东 符辉

侯晓丽, 罗振东, 符辉. 土壤水流中溶质输运的CN有限元解系数向量的降维方法[J]. 应用数学和力学, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
引用本文: 侯晓丽, 罗振东, 符辉. 土壤水流中溶质输运的CN有限元解系数向量的降维方法[J]. 应用数学和力学, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
HOU Xiaoli, LUO Zhendong, FU Hui. A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
Citation: HOU Xiaoli, LUO Zhendong, FU Hui. A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226

土壤水流中溶质输运的CN有限元解系数向量的降维方法

doi: 10.21656/1000-0887.450226
基金项目: 

国家自然科学基金(11671106)

详细信息
    作者简介:

    侯晓丽(1990—), 女, 讲师, 博士生(E-mail: 50901655@ncepu.edu.cn);罗振东(1958—), 男, 教授, 博士, 博士生导师(通讯作者. E-mail: zhdluo@ncepu.edu.cn).

    通讯作者:

    罗振东(1958—), 男, 教授, 博士, 博士生导师(通讯作者. E-mail: zhdluo@ncepu.edu.cn).

  • 中图分类号: O242.21

A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow

Funds: 

The National Science Foundation of China(11671106)

  • 摘要: 利用特征投影分解(proper orthogonal decomposition,POD)方法建立土壤水流中溶质输运的一种很少未知量和精度足够高的CrankNicolson(CN)有限元解系数向量的降维外推仿真模型, 并分析这种降维外推仿真模型解的存在性和稳定性及误差.用数值实验检验该模型的有效性和理论结果的正确性.
  • [2]李焕荣, 罗振东. 非粘性土壤中溶质运移问题的守恒混合有限元法及其数值模拟[J]. 计算数学, 2010,32(2): 183-194.(LI Huanrong, LUO Zhendong. Conservation mixed finite element methods and simulations for the solute moving problems in the nonstick soil water[J]. Mathematica Numerica Sinica,2010,32(2): 183-194. (in Chinese))
    雷志栋. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.(LEI Zhidong. Soil Hydrodynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese))
    [3]LUO Z D, LI H, ZHOU Y J, et al. A reduced finite element formulation based on POD method for two-dimensional solute transport problems[J]. Journal of Mathematical Analysis and Applications,2012,385(1): 371-383.
    [4]LUO Z D. Finite Element and Reduced Dimension Methods for Partial Differential Equations[M]. Beijing: Springer and Science Press of China, 2024.
    [5]TENG F, LUO Z D. A natural boundary element reduced-dimension model for uniform high-voltage transmission line problem in an unbounded outer domain[J]. Computational and Applied Mathematics,2024,43(3): 106.
    [6]LI H, SONG Z. A reduced-order energy-stability-preserving finite difference iterative scheme based on POD for the Allen-Cahn equation[J]. Journal of Mathematical Analysis and Applications,2020,491(1): 124245.
    [7]LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation[J]. IEEE Transactions on Antennas and Propagation,2018,66(1): 242-254.
    [8]SELTEN F M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences,1997,54(16): 2099-2114.
    [9]LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics[J]. Applied Mathematics and Computation,2019,358: 128-145.
    [10]LUO Z D, CHEN G. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. London: Academic Press of Elsevier, 2019.
    [11]LUO Z D, LI H, SHANG Y, et al. A reduced-order LSMFE formulation based on POD method and implementation of algorithm for parabolic equations [J]. Finite Elements in Analysis and Design,2012,60: 1-12.
    [12]LUO Z D, DU J, XIE Z, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011,88(1): 31-46.
    [13]LUO Z D, ZHOU Y, YANG X. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics,2009,59(8): 1933-1946.
    [14]张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 2011.(ZHANG Gongqing, LIN Yuanqu. Notes on Functional Analysis[M]. Beijing: Peking University Press, 2011. (in Chinese))
    [15]CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematic, 2002.
  • 加载中
计量
  • 文章访问数:  17
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 修回日期:  2024-08-06
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回