Study of Free Vibration of Porous Functionally Graded Rectangular Plates With Initial Deformation
-
摘要: 面向多参数动力影响的功能梯度板定型前高效设计优化需求,建立了统一考虑初始变形、孔隙分布和梯度效应耦合影响的功能梯度板动力分析理论框架与模型. 采用一阶剪切变形理论下的位移场,描述了梯度材料厚度方向变化所致横向剪切效应. 使用Chebyshev-Ritz法对位移进行离散,推导出了含初始变形的多孔功能梯度板的能量泛函表达式. 根据最小能量原理得出振动系统的特征方程,并通过数值求解分析了多功能梯度板的自由振动特性. 通过与文献结果和有限元分析的对比,验证了该方法的收敛性和准确性. 结果表明:初始变形的引入会显著影响多孔功能梯度矩形板的自振频率,此外,孔隙、梯度指数等参数也会影响板的自振频率.
-
关键词:
- 初始变形 /
- 自由振动 /
- 功能梯度 /
- 孔隙率 /
- Chebyshev-Ritz法
Abstract: To meet the efficient design optimization requirements of functionally graded plates under multi-parameter dynamic effects, a unified theoretical framework and model for dynamic analysis was established, under the coupled influences of initial deformation, pore distribution, and gradient effects. The displacement field was described with the 1st-order shear deformation theory to account for the transverse shear effects caused by the graded material variation in the thickness direction. The displacement was discretized with the Chebyshev-Ritz method, and the energy functional expression of the porous functionally graded plate with initial deformation was derived. The characteristic equation of the vibration system was derived based on the principle of minimum energy, and the free vibration properties of the multi-functional graded plate were analyzed through numerical solutions. The convergence and accuracy of this method were validated by comparison with results from previous literatures and finite element analysis. The results show that, the introduction of initial deformation will significantly affect the natural vibration frequencies of porous functional gradient rectangular plates, in addition to the porosity, gradient indexes and other parameters will also affect the natural vibration frequency of the plate.-
Key words:
- initial deformation /
- free vibration /
- functional gradient /
- porosity /
- Chebyshev-Ritz method
-
表 1 不同情况下的辅助函数系数
Table 1. Auxiliary function coefficients in different situations
pu, qu ru, su pv, qv rv, sv pw, qw rw, sw px, qx rx, sx py, qy ry, sy C-C-C-C uniaxial buckling, biaxial buckling and shear buckling analysis 0 0 0 0 1 1 1 1 1 1 C-C-C-C bending, free vibration analysis 1 1 1 1 1 1 1 1 1 1 S-S-S-S uniaxial buckling, biaxial buckling, bending and free vibration analysis 0 1 1 0 1 1 1 0 1 0 S-S-S-S shear buckling analysis 0 0 0 0 1 1 0 0 0 0 表 2 FGM的组成特性
Table 2. Constituent properties of FGM
material constituent property E/(N/m2) μ ρ/(kg/m3) metal aluminum (Al) 7×1010 0.30 2 707 ceramic alumina (Al2O3) 3.8×1011 0.30 3 800 表 3 无初始变形时无量纲频率收敛情况
Table 3. Convergence of dimensionless frequencies without initial deformation
boundary C-C-C-C S-S-S-S N=M mode 1 mode 2 mode 4 mode 1 mode 2 mode 4 6 9.844 3 18.778 4 26.317 7 5.769 3 13.798 3 19.483 3 7 9.842 6 18.775 6 26.317 4 5.769 3 13.763 8 19.483 3 8 9.842 6 18.774 2 26.312 7 5.769 3 13.763 8 19.483 3 9 9.842 3 18.773 9 26.312 2 5.769 3 13.763 7 19.483 3 10 9.842 3 18.773 8 26.312 0 5.769 3 13.763 7 19.483 3 FEM 9.855 2 18.840 8 26.430 2 5.733 1 13.704 9 19.482 3 ref. [25] 9.871 0 18.881 4 26.406 2 5.761 9 13.798 0 19.494 4 表 4 梯度指数对无量纲频率的影响(h/a=0.1, θ=0)
Table 4. The impact of gradient indexes on dimensionless frequencies (h/a=0.1, θ=0)
BC C-C-C-C S-S-S-S n mode 1 mode 2 mode 4 mode 1 mode 2 mode 4 present 0 9.842 3 18.773 9 26.312 6 5.769 3 13.798 3 19.483 3 1 7.603 5 14.595 3 20.531 8 4.417 5 10.612 3 16.195 2 2 6.901 3 13.229 8 18.593 8 4.012 0 9.626 0 14.624 3 5 6.448 3 12.263 4 17.153 9 3.785 3 9.027 1 12.630 9 10 6.182 3 11.700 3 16.322 0 3.655 0 8.685 1 11.516 6 ref. [25] 0 9.871 0 18.881 4 26.406 2 5.761 9 13.798 0 19.494 4 1 7.628 0 14.686 2 20.613 9 4.410 6 10.613 0 16.204 4 2 6.923 3 13.311 7 18.667 3 4.005 9 9.626 6 14.632 6 5 6.466 7 12.332 6 17.213 5 3.780 6 9.026 7 12.638 1 10 6.198 8 11.762 5 16.374 3 3.651 0 8.684 3 11.523 2 表 5 长厚比和孔隙对多孔FGM无量纲基频ω*的影响(n=0)
Table 5. The influence of aspect ratios and porosities on dimensionless fundamental frequency ω* of the porous FGM (n=0)
λ θ boundary S-S-S-S C-C-C-C uniform linear uniform linear 10 0 0.113 5 0.113 5 0.193 5 0.193 5 0.1 0.114 1 0.114 8 0.195 2 0.195 9 0.2 0.115 2 0.116 3 0.197 5 0.198 4 0.3 0.116 8 0.117 9 0.200 6 0.201 2 12.5 0 0.073 5 0.073 5 0.128 0 0.128 0 0.1 0.073 9 0.074 4 0.129 0 0.129 6 0.2 0.074 6 0.075 4 0.130 4 0.131 3 0.3 0.075 6 0.076 4 0.132 3 0.133 1 15 0 0.051 4 0.051 4 0.090 7 0.090 7 0.1 0.051 7 0.052 0 0.091 3 0.091 8 0.2 0.052 1 0.052 7 0.092 2 0.093 0 0.3 0.052 8 0.053 4 0.093 5 0.094 3 -
[1] 滕兆春, 马铃权, 付小华. 多孔功能梯度材料Timoshenko梁的非线性自由振动分析[J]. 西北工业大学学报, 2022, 40(5): 1145-1154.TENG Zhaochun, MA Lingquan, FU Xiaohua. Nonlinear free vibration analysis of Timoshenko beams with porous functionally graded materials[J]. Journal of Northwestern Polytechnical University, 2022, 40(5): 1145-1154. (in Chinese) [2] LI C, SHEN H S, WANG H. Nonlinear vibration of sandwich beams with functionally graded negative Poisson's ratio honeycomb core[J]. International Journal of Structural Stability and Dynamics, 2019, 19(3): 1950034. doi: 10.1142/S0219455419500342 [3] 李双鹏. 多孔功能梯度板的等几何分析[D]. 南京: 南京航空航天大学, 2021.LI Shuangpeng. Porosity-dependent isogeometric analysis of functionally graded plates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese) [4] THAI H T, KIM S E. A review of theories for the modeling and analysis of functionally graded plates and shells[J]. Composite Structures, 2015, 128: 70-86. doi: 10.1016/j.compstruct.2015.03.010 [5] 李华东, 朱锡, 梅志远, 等. 功能梯度板壳的力学研究进展[J]. 材料导报, 2012, 26(1): 110-118.LI Huadong, ZHU Xi, MEI Zhiyuan, et al. The development of the mechanical behaviour researches on functionally graded plates and shells[J]. Materials Reports, 2012, 26(1): 110-118. (in Chinese) [6] CHEN M F, JIN G Y, YE T G, et al. An isogeometric finite element method for the in-plane vibration analysis of orthotropic quadrilateral plates with general boundary restraints[J]. International Journal of Mechanical Sciences, 2017, 133: 846-862. doi: 10.1016/j.ijmecsci.2017.09.052 [7] PINGULKAR P, BHEEMAPPA S. Free vibration analysis of laminated composite plates using finite element method[J]. Polymers and Polymer Composites, 2016, 24(7): 529-538. doi: 10.1177/096739111602400712 [8] VINYAS M. A higher-order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods[J]. Composites (Part B): Engineering, 2019, 158: 286-301. doi: 10.1016/j.compositesb.2018.09.086 [9] 李情, 陈莘莘. 基于重构边界光滑离散剪切间隙法的复合材料层合板自由振动分析[J]. 应用数学和力学, 2022, 43(10): 1123-1132. doi: 10.21656/1000-0887.430109LI Qing, CHEN Shenshen. Free vibration analysis of laminated composite plates based on the reconstructed edge-based smoothing DSG method[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1123-1132. (in Chinese) doi: 10.21656/1000-0887.430109 [10] CHEN S S, XU C J, TONG G S, et al. Free vibration of moderately thick functionally graded plates by a meshless local natural neighbor interpolation method[J]. Engineering Analysis With Boundary Elements, 2015, 61: 114-126. doi: 10.1016/j.enganabound.2015.07.008 [11] WANG J F, YANG J P, LAI S K, et al. Stochastic meshless method for nonlinear vibration analysis of composite plate reinforced with carbon fibers[J]. Aerospace Science and Technology, 2020, 105: 105919. doi: 10.1016/j.ast.2020.105919 [12] QIN B, ZHONG R, WU Q Y, et al. A unified formulation for free vibration of laminated plate through Jacobi-Ritz method[J]. Thin-Walled Structures, 2019, 144: 106354. doi: 10.1016/j.tws.2019.106354 [13] 鲍四元, 邓子辰. 薄板弯曲自由振动问题的高精度近似解析解及改进研究[J]. 应用数学和力学, 2016, 37(11): 1169-1180. doi: 10.21656/1000-0887.370005BAO Siyuan, DENG Zichen. High-precision approximate analytical solutions for free bending vibrations of thin plates and an improvement[J]. Applied Mathematics and Mechanics, 2016, 37(11): 1169-1180. (in Chinese) doi: 10.21656/1000-0887.370005 [14] 王永福, 漆文凯, 沈承, 等. 弹性约束边界条件下矩形蜂窝夹芯板的自由振动分析[J]. 应用数学和力学, 2019, 40(6): 583-594. doi: 10.21656/1000-0887.390348 WANG Yongfu, QI Wenkai, SHEN Cheng, et al. Free vibration analysis of rectangular honeycomb-cored plates under elastically constrained boundary conditions[J]. Applied Mathematics and Mechanics, 2019, 40(6): 583-594. (in Chinese) doi: 10.21656/1000-0887.390348 [15] TORNABENE F, LIVERANI A, CALIGIANA G. FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations[J]. International Journal of Mechanical Sciences, 2011, 53(6): 446-470. doi: 10.1016/j.ijmecsci.2011.03.007 [16] WANG Y, FENG C, YANG J, et al. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113761. doi: 10.1016/j.cma.2021.113761 [17] 滕兆春, 丁树声, 郑鹏君. 弹性地基上变厚度矩形板自由振动的GDQ法求解[J]. 应用力学学报, 2014, 31(2): 236-241.TENG Zhaochun, DING Shusheng, ZHENG Pengjun. Free vibration analysis of rectangular plates with variable thickness on elastic foundation by using GDQ method[J]. Chinese Journal of Applied Mechanics, 2014, 31(2): 236-241. (in Chinese) [18] 张继超, 钟心雨, 陈一鸣, 等. 基于Hamilton体系的功能梯度矩形板自由振动问题的解析解[J]. 应用数学和力学, 2024, 45(9): 1157-1171. doi: 10.21656/1000-0887.440279ZHANG Jichao, ZHONG Xinyu, CHEN Yiming, et al. Hamiltonian system-based analytical solutions to free vibration problems of functionally graded rectangular plates[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1157-1171. (in Chinese) doi: 10.21656/1000-0887.440279 [19] 梁斌, 李戎, 张伟, 等. 功能梯度材料圆柱壳的振动特性研究[J]. 船舶力学, 2011, 15(1/2): 109-117.LIANG Bin, LI Rong, ZHANG Wei, et al. Vibration characteristics of functionally graded materials cylindrical shells[J]. Journal of Ship Mechanics, 2011, 15(1/2): 109-117. (in Chinese) [20] 王青山, 史冬岩, 罗祥程. 任意边界条件下矩形板的面内自由振动特性[J]. 华南理工大学学报(自然科学版), 2015, 43(6): 127-134.WANG Qingshan, SHI Dongyan, LUO Xiangcheng. In-plane free vibration of rectangular plates in arbitrary boundary conditions[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(6): 127-134. (in Chinese) [21] 陈莘莘, 童谷生, 魏星. 基于自然单元法的功能梯度中厚板自由振动分析[J]. 力学季刊, 2016, 37(2): 345-353.CHEN Shenshen, TONG Gusheng, WEI Xing. Free vibration analysis of moderately thick functionally graded plates using the natural element method[J]. Chinese Quarterly of Mechanics, 2016, 37(2): 345-353. (in Chinese) [22] 滕兆春, 席鹏飞. 弹性地基上多孔功能梯度材料矩形板的自由振动与临界屈曲载荷分析[J]. 计算力学学报, 2022, 39(5): 582-590.TENG Zhaochun, XI Pengfei. Analysis of free vibrations and critical buckling loads of a porous functionally graded materials rectangular plate resting on elastic foundation[J]. Chinese Journal of Computational Mechanics, 2022, 39(5): 582-590. (in Chinese) [23] KIRAN M C, KATTIMANI S C, VINYAS M. Porosity influence on structuralbehaviour of skew functionally graded magneto-electro-elastic plate[J]. Composite Structures, 2018, 191: 36-77. doi: 10.1016/j.compstruct.2018.02.023 [24] GUPTA A, TALHA M. An assessment of a non-polynomial based higher order shear and normal deformation theory for vibration response of gradient plates with initial geometric imperfections[J]. Composites (Part B): Engineering, 2016, 107: 141-161. doi: 10.1016/j.compositesb.2016.09.071 [25] ZHU P, LIEW K M. Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method[J]. Composite Structures, 2011, 93(11): 2925-2944. doi: 10.1016/j.compstruct.2011.05.011 -
下载:
渝公网安备50010802005915号