留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温致材料弹性模量变化的刚-柔-热耦合系统动力学

杨煜林 田青龙 蔡陈生 唐育聪 任建伟 董杨 高辉遥 赵振宇 卢天健

杨煜林, 田青龙, 蔡陈生, 唐育聪, 任建伟, 董杨, 高辉遥, 赵振宇, 卢天健. 温致材料弹性模量变化的刚-柔-热耦合系统动力学[J]. 应用数学和力学, 2025, 46(9): 1130-1146. doi: 10.21656/1000-0887.450255
引用本文: 杨煜林, 田青龙, 蔡陈生, 唐育聪, 任建伟, 董杨, 高辉遥, 赵振宇, 卢天健. 温致材料弹性模量变化的刚-柔-热耦合系统动力学[J]. 应用数学和力学, 2025, 46(9): 1130-1146. doi: 10.21656/1000-0887.450255
YANG Yulin, TIAN Qinglong, CAI Chensheng, TANG Yucong, REN Jianwei, DONG Yang, GAO Huiyao, ZHAO Zhenyu, LU Tianjian. Dynamics of Rigid-Flexible-Thermal Coupled System With Temperature-Dependent Material Elastic Modulus[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1130-1146. doi: 10.21656/1000-0887.450255
Citation: YANG Yulin, TIAN Qinglong, CAI Chensheng, TANG Yucong, REN Jianwei, DONG Yang, GAO Huiyao, ZHAO Zhenyu, LU Tianjian. Dynamics of Rigid-Flexible-Thermal Coupled System With Temperature-Dependent Material Elastic Modulus[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1130-1146. doi: 10.21656/1000-0887.450255

温致材料弹性模量变化的刚-柔-热耦合系统动力学

doi: 10.21656/1000-0887.450255
(我刊编委卢天健来稿)
基金项目: 

国家自然科学基金 11972185

国家自然科学基金 12002156

国家自然科学基金 12302047

详细信息
    作者简介:

    杨煜林(1999—),男,硕士生(E-mail: ylyang@nuaa.edu.cn)

    通讯作者:

    赵振宇(1986—),男,副研究员,博士(通讯作者. E-mail: zhenyu_zhao@nuaa.edu.cn)

  • 中图分类号: O313.7

Dynamics of Rigid-Flexible-Thermal Coupled System With Temperature-Dependent Material Elastic Modulus

Contributed by LU Tianjian, M.AMM Editorial Board
  • 摘要:

    航天器在太空执行任务期间会受到复杂空间热环境载荷影响,导致其柔性结构的温度场发生显著变化,温度变化会引发结构的热动力学耦合强非线性的动力学响应,严重时会导致航天器失效. 对于大尺寸、低刚度的柔性结构,其母材弹性模量的微小变化会引起系统较大的响应,故有必要分析材料弹性模量随温度变化对刚-柔-热耦合系统动力学的影响规律. 该文以绝对节点坐标法(absolute nodal coordinate formulation, ANCF)为基础,采用位置和梯度作为表征位移场及温度场的广义坐标,考虑温度对材料弹性模量的影响,提出了位移场和温度场统一形函数插值的等参单元. 之后,根据虚功原理推导出系统的动力学方程,根据热量守恒定律推导出系统的传热方程,并采用广义α方法同时求解了每一个时间步内的两个方程. 首先通过Boley简支梁验证了该文所提模型的有效性,然后分别建立了旋转柔性梁和中心刚体-夹层帆板航天器的刚-柔-热耦合系统动力学模型,针对不考虑温致材料弹性模量变化和考虑温致材料弹性模量变化的不同工况,进行动力学分析和比较. 结果表明,相较于热应力,热环境下材料弹性模量的降低对系统响应的影响更为显著:对于旋转柔性梁,当角速度ω0为2 rad/s和10 rad/s时,柔性梁端部的最大变形量相比于刚-柔耦合工况分别增大了9.7%和4.5%;对于中心刚体-夹层帆板,当力矩M0为200 N · m和2 000 N · m时,帆板检测点的最大变形量相比于刚-柔耦合工况分别增大了8.7%和7.1%. 温度导致材料弹性模量的变化对刚-柔-热耦合系统动力学响应产生的影响不容忽视,该文结果可为航天器的控制系统设计提供重要参考.

    1)  (我刊编委卢天健来稿)
  • 图  1  ANCF单元

    Figure  1.  The ANCF element

    图  2  ANCF热力耦合单元

    Figure  2.  The ANCF thermal coupling element

    图  3  算法求解流程

    Figure  3.  The overall flow-chart of the computation algorithm

    图  4  简支梁上表面受瞬时热流载荷

    Figure  4.  A simply supported beam under suddenly applied heat input

    图  5  简支梁中点无量纲挠度时程曲线

    Figure  5.  Dimensionless midpoint deflection time histories of the simply supported beam plotted

    图  6  旋转柔性梁示意图

    Figure  6.  Schematic of a rotating flexible beam

    图  7  弹性模量随温度变化曲线

    Figure  7.  The temperature dependent elastic modulus curve

    图  8  不同转速下柔性梁的端部温度

    Figure  8.  Tip temperature curves of the flexible beam under different rotational speeds

    图  9  柔性梁端部的横向变形

    Figure  9.  Tip deformation curves of the flexible beam

    图  10  中心刚体-夹层帆板卫星示意图

    Figure  10.  Schematic of the rigid body-laminated solar panel

    图  11  夹层帆板示意图

    Figure  11.  Schematic of the laminated solar panel

    图  12  上/下面板母材的温变弹性模量

    Figure  12.  The temperature dependent elastic modulus of the material made of upper and lower panels

    图  13  芯层温变纵向和横向弹性模量

    Figure  13.  Temperature variations of longitudinal and transverse elastic moduli of the core layer

    图  14  M0=2 000 N · m时,不同时刻下的考虑弹性模量随温度变化的帆板横向变形云图

    Figure  14.  For M0=2 000 N · m, the transverse deformation contours of the solar panel the changing elastic modulus with the temperature at different moments

    图  15  不同力矩下,检测点的温度

    Figure  15.  Temperature curves at the test point under different torques

    图  16  检测点横向变形

    Figure  16.  Transverse deformations at the test point

    图  17  中心刚体旋转角度

    Figure  17.  Rigid body rotation angles

    表  1  简支梁材料参数

    Table  1.   Material parameters of the simply supported beam

    parameter symbol value
    density ρ/(kg·m-3) 2 810
    Young’s modulus E/GPa 71
    specific heat c/(J·kg-1·K-1) 920
    thermal-conductivity coefficient k/(W·m-1·K-1) 140
    thermal expansion coefficient α/K-1 2.3E-5
    下载: 导出CSV

    表  2  旋转柔性梁材料参数

    Table  2.   Material parameters of the rotating flexible beam

    parameter symbol value
    density ρ/(kg·m-3) 1 000
    specific heat c/(J·kg-1·K-1) 10
    thermal conductivity coefficient k/(W·m-1·K-1) 150
    thermal expansion coefficient α/K-1 2E-5
    下载: 导出CSV

    表  3  柔性梁端部的最大变形及增量

    Table  3.   Max deformations and increments of the flexible beam

    ω0/(rad/s) model max deformation/m Δ/%
    2 rigid-flexible 0.129 2 9.7
    variable E 0.141 7
    10 rigid-flexible 0.457 2 4.5
    variable E 0.477 6
    下载: 导出CSV

    表  4  帆板模型参数

    Table  4.   Material parameters of the solar panel

    parameter symbol value
    density1 ρ1/(kg·m-3) 1 800
    density2 ρ2/(kg·m-3) 50
    specific heat c/(J·kg-1·K-1) 10
    thermal conductivity coefficient k/(W·m-1·K-1) 500
    thermal expansion coefficient α/K-1 2E-6
    下载: 导出CSV

    表  5  检测点最大变形量及振动频率

    Table  5.   Max deformations and vibration frequencies at the test point

    M0/(N·m) model test point max deformation/m Δ/% test point vibration frequency/Hz
    200 rigid-flexible 0.014 9 8.7 1.6
    variable E 0.016 2 8.7 1.48
    2 000 rigid-flexible 0.148 1 7.1 1.6
    variable E 0.158 6 7.1 1.54
    下载: 导出CSV
  • [1] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013, 43(4): 390-414.

    HU Haiyan, TIAN Qiang, ZHANG Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J]. Advances in Mechanics, 2013, 43(4): 390-414. (in Chinese)
    [2] 段宝岩. 空间太阳能发电卫星的几个理论与关键技术问题[J]. 中国科学: 技术科学, 2018, 48(11): 1207-1218.

    DUAN Baoyan. The main aspects of the theory and key technologies about Space Solar Power Satellite[J]. Scientia Sinica: Technologica, 2018, 48(11): 1207-1218. (in Chinese)
    [3] LEE N, BACKES P, BURDICK J, et al. Architecture for in-space robotic assembly of a modular space telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2016, 2(4): 041207. doi: 10.1117/1.JATIS.2.4.041207
    [4] THORNTON E A, KIM Y A. Thermally induced bending vibrations of a flexible rolled-up solar array[J]. Journal of Spacecraft and Rockets, 1993, 30(4): 438-448. doi: 10.2514/3.25550
    [5] 胡甜赐, 陈素芳, 吴松, 等. 大型空间可展开结构热致振动研究[J]. 上海航天(中英文), 2021, 38(1): 28-35.

    HU Tianci, CHEN Sufang, WU Song, et al. Thermally induced vibration study for large-scale deployable spatial structures[J]. Aerospace Shanghai (Chinese & English), 2021, 38(1): 28-35. (in Chinese)
    [6] 陈夜, 王开浚, 沈海军, 等. 多柔性附件卫星热致振动特性研究[J]. 航天器工程, 2022, 31(2): 78-84.

    CHEN Ye, WANG Kaijun, SHEN Haijun, et al. Study on thermally induced vibration characteristics of satellites with multi-flexible appendages[J]. Spacecraft Engineering, 2022, 31(2): 78-84. (in Chinese)
    [7] 杨癸庚, 朱敏波, 连培园, 等. 大型可展开天线与卫星的热致耦合动力学分析[J]. 振动与冲击, 2014, 33(24): 173-178.

    YANG Guigeng, ZHU Minbo, LIAN Peiyuan, et al. Thermal induced coupling-dynamic analysis of a deployable satellite antenna system[J]. Journal of Vibration and Shock, 2014, 33(24): 173-178. (in Chinese)
    [8] LIKINS P W. Finite element appendage equations for hybrid coordinate dynamic analysis[J]. International Journal of Solids and Structures, 1972, 8(5): 709-731. doi: 10.1016/0020-7683(72)90038-8
    [9] JOHNSTON J D, THORNTON E A. Thermally induced dynamics of satellite solar panels[J]. Journal of Spacecraft and Rockets, 2000, 37(5): 604-613. doi: 10.2514/2.3633
    [10] LIU J Y, LU H. Thermal effect on the deformation of a flexible beam with large kinematical driven overall motions[J]. European Journal of Mechanics A: Solids, 2007, 26(1): 137-151. doi: 10.1016/j.euromechsol.2006.04.001
    [11] 刘锦阳, 崔麟. 热载荷作用下大变形柔性梁刚柔耦合动力学分析[J]. 振动工程学报, 2009, 22(1): 48-53.

    LIU Jinyang, CUI Lin. Rigid-flexible coupling dynamics analysis for flexible beam with large deformation and applied with thermal load[J]. Journal of Vibration Engineering, 2009, 22(1): 48-53. (in Chinese)
    [12] 王捷, 刘锦阳. 刚-柔-热耦合多体系统的动力学分析[J]. 应用力学学报, 2012, 29(5): 501-507.

    WANG Jie, LIU Jinyang. Rigid-flexible-thermal coupling dynamic analysis of flexible multi-body system[J]. Chinese Journal of Applied Mechanics, 2012, 29(5): 501-507. (in Chinese)
    [13] LIU J, PAN K. Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system[J]. Aerospace Science and Technology, 2016, 52: 102-114. doi: 10.1016/j.ast.2016.02.025
    [14] SHABANA A A. Computational Continuum Mechanics[M]. John Wiley & Sons, 2018.
    [15] SHEN Z, TIAN Q, LIU X, et al. Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation[J]. Aerospace Science and Technology, 2013, 29(1): 386-393. doi: 10.1016/j.ast.2013.04.009
    [16] SHEN Z, HU G. Thermally induced vibrations of solar panel and their coupling with satellite[J]. International Journal of Applied Mechanics, 2013, 5(3): 1350031. doi: 10.1142/S1758825113500312
    [17] 张炜华, 刘锦阳. 考虑刚-柔-热耦合的板结构多体系统的动力学建模[J]. 动力学与控制学报, 2016, 14(5): 438-447.

    ZHANG Weihua, LIU Jinyang. Rigid-flexible-thermal coupling dynamic formulation for hub-plate multibody system[J]. Journal of Dynamics and Control, 2016, 14(5): 438-447. (in Chinese)
    [18] 张威. 航天器太阳电池阵多体系统动力学建模与振动控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    ZHANG Wei. Research on multi-body dynamics and vibration control of spacecraft solar array system[D]. Harbin: Harbin Engineering University, 2021. (in Chinese)
    [19] CUI Y Q, YU Z Q, LAN P. A novel method of thermo-mechanical coupled analysis based on the unified description[J]. Mechanism and Machine Theory, 2019, 134: 376-392. doi: 10.1016/j.mechmachtheory.2019.01.001
    [20] CUI Y Q, LAN P, ZHOU H T, et al. The rigid-flexible-thermal coupled analysis for spacecraft carrying large-aperture paraboloid antenna[J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(3): 031003. doi: 10.1115/1.4045890
    [21] SOHN H. Effects of environmental and operational variability on structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 539-560. doi: 10.1098/rsta.2006.1935
    [22] 王力, 刘世忠, 丁万鹏, 等. 考虑时变温度作用的新型波形钢腹板组合箱梁动力特性分析[J]. 振动与冲击, 2021, 40(4): 58-65.

    WANG Li, LIU Shizhong, DING Wanpeng, et al. Dynamic analysis of a new-pattern composite box girder with corrugated steel webs under time-varying temperature condition[J]. Journal of Vibration and Shock, 2021, 40(4): 58-65. (in Chinese)
    [23] 贺文宇, 周磊, 李志东, 等. 环境温度对混凝土梁式桥频率的影响研究[J]. 湖南大学学报(自然科学版), 2024, 51(1): 33-42.

    HE Wenyu, ZHOU Lei, LI Zhidong, et al. Study on environmental temperature on frequency of concrete beam-type bridge[J]. Journal of Hunan University (Natural Sciences), 2024, 51(1): 33-42. (in Chinese)
    [24] 陈浩宇, 王彬文, 宋巧治, 等. 高超声速飞行器热颤振研究现状与展望[J]. 航空工程进展, 2022, 13(1): 19-27.

    CHEN Haoyu, WANG Binwen, SONG Qiaozhi, et al. Research progress and prospect of thermal flutter of hypersonic vehicles[J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 19-27. (in Chinese)
    [25] 黄杰, 姚卫星. 翼面热环境的并行迭代耦合方法及热模态分析[J]. 振动、测试与诊断, 2019, 39(4): 752-759.

    HUANG Jie, YAO Weixing. Parallel iterative coupled method for thermal environment of wing and thermal modal analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(4): 752-759. (in Chinese)
    [26] 王帅, 吴炜, 黄益民, 等. 温度对复合材料舵面颤振特性的影响[J]. 复合材料科学与工程, 2021(3): 5-13.

    WANG Shuai, WU Wei, HUANG Yimin, et al. The influence of temperature on flutter characteristics of composite rudder[J]. Composites Science and Engineering, 2021(3): 5-13. (in Chinese)
    [27] 李宇峰, 贺利乐, 张璇, 等. 典型热防护壁板结构的热模态分析[J]. 应用力学学报, 2017, 34(1): 43-49.

    LI Yufeng, HE Lile, ZHANG Xuan, et al. Thermal modal analysis of typical thermo-defend panel structure[J]. Chinese Journal of Applied Mechanics, 2017, 34(1): 43-49. (in Chinese)
    [28] 赵振宇. 环境温度作用下拱桥温度-结构耦合场问题研究[D]. 西安: 长安大学, 2011.

    ZHAO Zhenyu. Study on the thermal-structural coupled field of arch bridge by environmental temperature action[D]. Xi'an: Changan University, 2011. (in Chinese)
    [29] 尹冠生, 赵振宇, 徐兵. 太阳辐射作用下拱桥温度场研究[J]. 应用力学学报, 2014, 31(6): 939-944.

    YIN Guansheng, ZHAO Zhenyu, XU Bing. Study on the thermal field of arch bridge by solar radiation action[J]. Chinese Journal of Applied Mechanics, 2014, 31(6): 939-944. (in Chinese)
    [30] SHABANA A A, YAKOUB R Y. Three dimensional absolute nodal coordinate formulation for beam elements: theory[J]. Journal of Mechanical Design, 2001, 123(4): 606-613. doi: 10.1115/1.1410100
    [31] MIKKOLA A M, SHABANA A A. A non-incremental finite element procedure for the analysis of large deformation of plates and shells in mechanical system applications[J]. Multibody System Dynamics, 2003, 9(3): 283-309. doi: 10.1023/A:1022950912782
    [32] 张慎, 陈州, 李霆, 等. 基于ABAQUS的木材本构模型及试验验证[J]. 工程力学, 2025, 42(3): 77-89.

    ZHANG Shen, CHEN Zhou, LI Ting, et al. Constitutive model of wood based on ABAQUS and its test verification[J]. Engineering Mechanics, 2025, 42(3): 77-89. (in Chinese)
    [33] 崔雅琦. 基于绝对节点坐标法的多场耦合系统动力学分析方法及应用[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    CUI Yaqi. The method of dynamic analysis for multi-field coupling system and its applications based on the absolute nodal coordinate formulation[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [34] ARNOLD M, BRÜLS O. Convergence of the generalized-α scheme for constrained mechanical systems[J]. Multibody System Dynamics, 2007, 18(2): 185-202. doi: 10.1007/s11044-007-9084-0
    [35] BOLEY B A. Thermally induced vibrations of beams[J]. Journal of the Aeronautical Science, 1956, 23(2): 179-181.
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-19
  • 修回日期:  2024-10-24
  • 刊出日期:  2025-09-01

目录

    /

    返回文章
    返回